Research Article  Open Access
Zilong Zhou, Chenglong Lin, Xin Cai, Riyan Lan, "Interval Nonprobabilistic Reliability Analysis for Ancient Landslide considering StrainSoftening Behavior: A Case Study", Advances in Civil Engineering, vol. 2020, Article ID 8884078, 13 pages, 2020. https://doi.org/10.1155/2020/8884078
Interval Nonprobabilistic Reliability Analysis for Ancient Landslide considering StrainSoftening Behavior: A Case Study
Abstract
Uncertainties in geotechnical parameters significantly affect the stability evaluation of an ancient landslide, especially when considering the strainsoftening behavior. Due to the great difficulty in obtaining the probability density distribution of geoparameters, an interval nonprobability reliability analysis framework combined with numerical strainsoftening constitutive relations was established in this paper. Interval variables were defined as the uncertain parameters in the strainsoftening model. The interval nonprobabilistic reliability was defined as the minimum distance from the origin point to the failure surface in the standard normal space, which is the key index for describing the ability of a system to tolerate the variation of uncertain parameters. The proposed method was used to evaluate the reliability of Baishi ancient landslide. The parameter sensitivity analysis was also conducted. Through the proposed method, it is considered that Baishi ancient landslide is safe and stable, and the strain threshold is the dominant parameter. The results calculated by the proposed method agree well with the actual situation. This indicates the proposed method is more applicable than the traditional probability method when the data are scare.
1. Introduction
Considerable uncertainties exist in landslide engineering [1ā5]. Traditional deterministic analysis cannot account for the uncertainty explicitly in most cases [6, 7]. Overestimation or conservative estimation of stability is very common [8]. Therefore, the reliability analysis considering the effect of uncertainties should be proposed for exactly evaluating the landslide stability.
The reliability method has been developed for different fields since 1930s [9]. The reliability of engineering structure is defined as the ability to perform the predetermined function in the specified time under the specified conditions. In landslide engineering, the basic steps of reliability analysis are as follows [9, 10]: (1) determining the input variables; (2) determining the performance function of the limiting state; (3) calculating the reliability index. Great achievements have been made on landslide reliability calculation. The uncertainties in geomaterial properties and subsurface stratigraphic and other aspects of landslide engineering were well considered [11ā13]. However, the strainsoftening behavior, as a common characteristic in geomaterial deformation, was usually neglected [14, 15]. It is necessary to consider the strainsoftening behavior to evaluate the slope stability accurately [16ā19].
Limited studies can be found to analyze the landslide reliability considering the strainsoftening behavior. Terzaghi and Peck [20] firstly took notice of the strainsoftening behavior of soil. Bishop [21] proposed the concept of progressive failure of slopes. Skempton [22] defined the average residual factor over a slip surface as the proportion of slip surface length over which the shear strength has reduced to a residual value. In a long time, residual factor has been the most commonly used parameter to describe the strainsoftening behavior in reliability analysis. Grivas and Chowdhury [23] firstly developed the probabilistic reliability analysis for strainsoftening slopes. Stability factor was obtained by the limit equilibrium method with residual factor , and a simple probabilistic reliability analysis was conducted under āā assumption (ignoring the internal friction angle). Chowdhury et al. [24] considered the correlations between shear parameters. In recent years, Metya et al. [25] conducted a probabilistic reliability analysis based on the first order reliability method; the performance function () based on the Bishop simplified method was adapted to take strainsoftening into account in terms of residual factor . Bhattacharya et al. [26] regraded residual factor as a random variable, and the influence of was comprehensively analyzed and compared under different probability density distributions. These probabilistic reliability analyses can well describe the uncertainties in the strainsoftening slope. However, these methods require the probability density distribution of uncertain parameters, which significantly affects the results of reliability evaluations. Usually, it is hard to obtain the adequate data describing the strainsoftening behavior of landslide. The independent normal or lognormal distribution assumption can also cause some errors in the strainsoftening relation. For examples, strength parameters may be negative based on normal distribution assumption. There are always some possibilities that the residual strength even exceeds the peak strength due to the longtail curve in the independent normal or lognormal distribution assumption (, , in which and are the peak and residual cohesion, respectively, and and are the peak and residual frictional angle respectively). In addition, the randomness of some uncertain parameters needs further discussion. Fortunately, the interval theory may provide a new strategy. This new idea was usually used in structure engineering [27ā29]. Reliability was used to describe the ability of a system to tolerate the variation of uncertain parameters instead of failure probability. Interval values can better describe the uncertainties in stainsoftening relations when the data are scare. The bounds of the interval value can also guarantee the correct relations between peak and residual strength (, ). Therefore, interval nonprobability reliability method has great application prospect in landslide engineering [30ā32].
In this paper, an interval nonprobabilistic reliability analysis framework combined with numerical strainsoftening constitutive relations was established. The proposed method requires only the boundary values instead of specific probability density distribution functions of uncertain parameters describing the strainsoftening behavior, greatly decreasing the demanding for data. Nonprobabilistic reliability index instead of a deterministic safety factor or traditional probability of failure was used to describe the stability. The method was used to verify the stability of Baishi ancient landslide. Results of the proposed method were compared with the results of the traditional probabilistic method and the in situ investigation to prove the applicability. The sensitivity analysis was also discussed to make a reference for similar engineering.
2. Methodology
2.1. Interval Variables in StrainSoftening Model
To consider the uncertainties as well as the strainsoftening behavior, numerical strainsoftening constitutive model is commonly used [33]. In the simplified constitutive model, the strainsoftening behavior is characterized by five parameters: peak cohesion , peak friction angle , residual cohesion , residual friction angle , and the threshold parameter when strength reduces from peak to residual .
The uncertainty of different parameters needs to be confirmed. As shown in Figure 1, was a parameter describing the malleability of strainsoftening materials [33]. When increases from 0 to ā, materials change from brittleness to malleability, and the strength of geomaterials changes from residual to peak state. Considering the noticeable malleability effect in soil deformation, is considered as a variable in this paper. is also greatly associated with the residual factor [22]; they are the cause and effect in negative correlation. Peak and residual shear strength (, , , and ) are the common parameters with great uncertainties describing the inherent quality of geomaterials [15, 26]. Therefore, all these parameters in numerical strainsoftening constitutive model (, , , , and ) are confirmed as interval variables to consider the uncertainties. It is noted that interval variables are assumed mutually independent.
(a)
(b)
2.2. Determination of Safety Factor
The response interval of controlled by interval variables is obtained based on the numerical model in . Each response of against each group of interval variables is calculated by the shear strength reduction (SSR) method, which is commonly used in landslide engineering [34, 35]. The SSR method can truly represent stressstrain relations in the progressive failure process [33], thus very suitable for landslide with strainsoftening behavior. In this method, the safety factor is defined as the ratio of the actual shear strength to the reduced shear strength at failure (equations. (1) and (2)). Zhang et al. [36] extended this method to solve of a homogeneous slope with a strainsoftening behavior:where is the safety factor; and are the real strength parameters at failure; and and are the original strength parameters.
Interval variables , , , , and are the input parameters. Specially, the strength reduction process is only conducted in the slip zones [37]. The accumulations and the bedrock layer remain unchanged with the Mohrācoulomb model. In other words, slip zones are considered as the overriding potential slip surface. The reason is that failures usually occur in local weaker materials firstly in the ancient landslide.
2.3. Performance Function
Performance function presenting the limit state of system is established based on as
However, numerical method cannot give an explicit relationship between and interval variables. In this paper, the explicit expression of was obtained by response surface fitting [38] via a series of deterministic tests. Usually, the explicit expression needs to be assumed in advance [10, 39, 40]. Some preliminary treatment is made to optimize the performance function in this paper. According to the expression obtained by the limit equilibrium method [26], can be written as
For simplification, could be rewritten aswhere is the residual factor, , , is the residual safety factor, and is the peak safety factor.
In equation (5), each subitem () was assumed as a linear or quadratic polynomial for convenience. As introduced in Section 2.1, when , materials are brittle, strength of whole slip surface are in residual state, and then , . Therefore, the assumed expressions of each subitems are written aswhere are the undetermined coefficients.
Substituting equations (6)ā(9) into equation (3), the performance function can be expressed as
After fitting a series of deterministic results ((, , , , ), ), the explicit expression of in equation (10) can be obtained.
2.4. Reliability Analysis Based on Interval Theory
Interval nonprobability reliability index , representing the ability of a system to tolerate the variation of uncertain parameters, is defined as the minimum distance between original point and failure surface in the standard normal space [27ā29] (as shown in Figure 2).
For , where M is the performance function, () are the controlling interval variables, there are (iā=ā1, 2, ā¦, n), where and are the lower and upper bounds of respectively. Then, the performance function M is also an interval to response, where and are the lower and upper bounds of , respectively. and are defined as the mean and radius of M, respectively (equations (11) and (12)). Then, the interval nonprobability reliability index Ī· is defined as in equation (13):where is the failure plane, and this hypersurface divides the space into the failure domain and the security domain. When , the system is in failure state and the opposite it is in safe state. According to equations (11)ā(13), if , then (iā=ā1, 2, ā¦, n), , and the system is safe and reliable. If , then (iā=ā1, 2, ā¦, n), ā<ā0 and the system fails. If , then (iā=ā1, 2, ā¦, n), or or are all possible. As a result, the system could be safe or in failure. And, the larger the value of Ī·, the safer the system [32].
3. Case Study: Baishi Ancient Landslide
3.1. Geological Background
To verify the applicability of our reliability analysis method, we took a strainsoftening landslide, i.e., Baishi ancient landslide, as an example. Baishi ancient landslide is located at the south mountains area in Guangxi province, China (Figure 3(a)). Geographic, geomorphic, elevation, and other information is shown in Figure 3(b). Geologically, Baishi landslide is an accumulated ancient landslide with obvious ancient slip bands. The geomaterial distribution could be described as three uneven layers: (1) argillaceous sandstone bedrock downmost, (2) slip bands with strainsoftening behavior inbetween, and (3) soilgravel accumulations uppermost.
(a)
(b)
3.2. Parameter Collection
Some critical parameters used for simulation were collected from geological surveys or engineering experience as listed in Table 1.
 
Note: only the shear strength parameters of slip bands were collected in detail. 
3.3. Interval Variables and Numerical Model in Case Study
According to in situ data and engineering experience [15, 33, 41], interval variables of Baishi ancient landslide are set in Table 2. Correlation relation of parameters (; ) in strainsoftening constitutive is well presented.
 
Note: only the parameters of slip zones are considered with the strainsoftening behavior and abstracted as interval variables. 
The numerical model in of Baishi ancient landslide is established on the real geological information. According to some preliminary computation and in situ surveys, profile AA^{ā²} in Area I is chosen as the main research object (shown in Figure 4). In this model, the ancient slip zones are abstracted as a 2ām thick band. The mesh of slip zones is almost all quadrangles of 1āmāĆā1ām, and the grid division is enough for computation.
4. Results and Discussion
4.1. Stability Analysis
Table 3 presents some results of deterministic analysis of Baishi ancient landslide. Three examples are conducted. In example 1, safety factor is calculated in peak strength when the peak strength parameters () are set as the maximum, mean, and minimum values, respectively. In example 2, safety factor is calculated in residual strength when the residual strength parameters () are set as the maximum, mean, and minimum values, respectively. In example 3, safety factor is calculated considering the strainsoftening behavior when is set as the maximum, mean, and minimum values, respectively. In these three examples, all the parameters are set as mean values except for the assigned parameters. In examples 1 and 2, results are also calculated by the Spencer method to make a comparison with that by the SSR method.

Results in examples 1 and 2 indicate that, when is calculated only in peak or residual strength, uncertainties of shear strength parameters (; ) can cause great differences. The values of and should be thus considered as variables. Results calculated by SSR and Spencer methods are in good agreement, which indicates that the numerical model and method in this paper are valid. Results in example 3 indicate that when is calculated considering the strainsoftening behavior, the results are significantly influenced by the value of . Also, is set as a variable. Moreover, calculation results of are 1.695, 1.095, and 1.414, respectively, when parameters (; ) are set as the mean value of peak strength and residual strength and in the case of considering the strainsoftening behavior. Result indicates that the strainsoftening behavior should be considered in the stability evaluation of Baishi ancient landslide.
4.2. Performance Function Analysis
4.2.1. Results of Performance Function
Table 4 presents some results of deterministic tests for fitting the performance function. The central composite design was used to conduct the deterministic stability computation. As shown in Table 3, numbers 1ā32 are the groups of twolevel design of five variables (, , and ); numbers 33ā37 are 5 groups of extension tests for nonlinear influence checkout; numbers 38ā42 are 5 groups of random tests on the limited interval.

The nonlinearfitting function is used to solve the undetermined coefficients by least squares regression. Results of undetermined coefficients are listed in Table 5. The comparisons of in FLAC 3D obtained by the response function are shown in Figure 5. obtained from the response surface and that from FLAC 3D agree well. This means that the fitting of the performance function is valid.

Substituting the results of Table 5 into equations (3) and (6)ā(9), we obtain the explicit expression of performance function as
4.2.2. Sensitivity of Safety Factor to Variables
The response result of induced by and , response result of induced by and , and response result of and induced by are shown in Figures 6(a)ā6(c), respectively. These results indicate that has a greater influence on the peak safety factor than ; has a greater influence on the residual safety factor than . The nonlinear influence of shear strength parameters (; ) is not obvious on respective intervals. However, greatly affects the weight function and , and the nonlinear influence is obvious even on the small interval .
(a)
(b)
(c)
Sensitivity of safety factor to variables is shown in Figure 7. Each interval variable is analyzed with the others fixed at the mean value. Results indicate that all the interval variables have some influence to safety factor ; however, the influence of and is not so obvious. The sensitivity to interval variables can be ranked as .
Under the assumptions in Section 2.3, and are equal to the weight functions to control the contributions of and to . That is to say, is equal to a weight coefficient to control the contributions of (; ) to . Therefore, the interval response of induced by each interval variables under different is shown in Figure 8 values are set to 0.00, 0.02, 0.04, 0.06, 0.08, and 0.10, respectively. When an interval variable is analyzed, others are fixed at the mean value. Results indicate that, with increasing, the interval response of induced by and changes slightly. In detail, the value of induced by decreases, induced by increases. However, with increasing, the interval response of induced by decreases and that induced by increases. The average level of interval response of increases with the growth of . Therefore, it is considered that all the interval variables are of great significance to safety factor , where is the most outstanding one.
4.3. Reliability Analysis
4.3.1. Results of Reliability
According to the result in equation (14), the monotony of performance function can be obtained. For , and . For (, , , ) on their interval, and . For each single interval variable, function is continuous monotonic. However, is at least more than 0.04 in Baishi ancient landslide according to the literature [41]. In fact, the strength of whole slip surface is in residual state when āā¶ā0, which is unreal for an ancient landslide with prolonged dormancy. Therefore, in Baishi ancient landslide, we adopt , and the interval nonprobability reliability is solved as
Result of indicates that Baishi ancient landslide is reliable and safe () under the natural condition, agreeing well with the actual situation. In fact, the planned highway began the construction several months ago, and this landslide was also safe during the disturbance of construction.
The reliability analysis is also conducted by the traditional probabilistic method to make a comparison. According to the literature [26], , , , , and are considered as random variables. , , , and are assumed as lognormal distribution, but is assumed as beta distribution. Mean values are fixed as the same as the mean of intervals in this paper, and coefficients of variation are chosen from the literature [26]. The probability reliability index is also defined as the minimum distance from the origin point to the failure surface in the standard normal space. Some results are listed in Table 6.
 
Note: COV: coefficient of variation, q and r are the parameters describing the probability density distribution, is the probability of failure, PRI is the probability reliability index, and INPRI is interval nonprobability of failure. More details are shown in the literature [26]. 
Results in Table 6 indicate that the reliability is greatly influenced by the probability density distribution. The probability reliability index can be little to 0.8364 with nearly 10% probability of failure. It can be also large to 2.1075 but with nearly 35% probability of failure. These results cannot be used in landslide engineering. However, bounds of interval variables can well solve this problem. The robustness of interval nonprobability reliability makes it more suitable to evaluate a landslide with the strainsoftening behavior when the probability density is unknown.
4.3.2. Sensitivity of Interval Nonprobability Reliability Index on Variables
For each interval variable, , where is the center value, is the radius of interval and . and are the controlling indexes of an interval.
The influence of interval radius to interval nonprobability reliability index is shown in Figure 9. Fix the center value of an interval variable at original value; change the radius from 0 to original maximum radius, presented by axis from 0 to 1 (Figure 9), while other interval variables are set as usual. Results indicate that when the interval radius of and decreases, significantly improves; the fall of the radius of and contributes little to the improvement of ; the drop in radius of even makes decrease. Therefore, the influence of variable radius is ranked as follows: . It is worth noting that decreasing variable radius of declines as well. The reason is that, when the radius of decreases to 0, eventually converges to a mean value. It indicates that the center value of interval variable is also of great importance.
The influence of interval center value to is shown in Figure 10. The radius of an interval variable is fixed at 0; the interval center value changes from minimum to maximum on the interval, presented by axis from ā1 to 1 (Figure 10), while other interval variables are set as usual. Results indicate that when the center value of interval variables and increases, significantly increases. And, the line of grows faster. When the center value of interval variables increases, the growth of is not so obvious.
The interval response of induced by interval variables (, ) under different is shown in Figure 11. Set to 0.00, 0.02, 0.04, 0.06, 0.08, and 0.10, respectively. The radius of an interval variable is fixed at 0; the interval center value is changed from the minimum value to the maximum on the interval, while other interval variables are set as usual. Results in Figure 11 indicate that, with increasing, the interval response of induced by and changes slightly. In detail, the value of induced by decreases and that induced by increases. However, with increasing, the interval response of induced by quickly decreases and that induced by quickly increases. In summary, both the center value and range of all interval variables are important to . The is the most significant factor which should be preferentially determined.
5. Conclusions
In the present study, an interval nonprobability reliability analysis framework combined with numerical strainsoftening constitutive relations was established to evaluate the reliability of Baishi ancient landslide. The main conclusions can be drawn as follows:(1)The uncertainties of geomaterial properties significantly affect the stability evaluation of the ancient landslide. To correctly and effectively consider these uncertainties when data are scarce, an interval nonprobability reliability analysis framework combined with numerical strainsoftening constitutive relations is established.(2)The proposed reliability analysis method is verified by Baishi ancient landslide as a case study. Uncertain parameters (, , , , and ) in the strainsoftening numerical constitutive relation are set as interval variables. The interval nonprobability reliability index is defined as the minimum distance from the origin point to the failure surface in the standard normal space. This index is used to describe the ability of a system to tolerate the variation of uncertain parameters.(3)The interval nonprobability reliability index of Baishi is 1.2029 (), indicating that Baishi ancient landslide is safe under the nature condition. The results calculated by the proposed method agree with the reality. However, the reliability index in the probability method ranges greatly; Baishi ancient landslide holds a 35% probability of failure. Therefore, the interval nonprobability method is more suitable.(4)The sensitivity analysis indicates that is the most significant variable controlling both safety factor and interval nonprobability reliability index . In addition, is equivalent to a weight coefficient that can affect the influence of (, ) and (, ). When increases, the influence of (, ) decreases but that of (, ) increases.(5)Interval nonprobability reliability method combined with numerical strainsoftening constitutive relation can accurately present the relation of parameters between peak and residual strength with a few data and obtain robust results. It provides a great complement for traditional probabilistic methods.
Data Availability
The data used to support the findings of this study are included within the article.
Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Acknowledgments
This work was supported by the National Basic Research Program of China (2015CB060200), the National Natural Science Foundation of China (41772313), Hunan Science and Technology Planning Project (2019RS3001), and the Graduated Studentsā Research and Innovation Fund Project of Central South University (2019zzts987).
References
 Z. Zhou, X. Cai, X. Li, W. Cao, and X. Du, āDynamic response and energy evolution of sandstone under coupled staticdynamic compression: insights from experimental study into deep rock engineering applications,ā Rock Mechanics and Rock Engineering, vol. 53, no. 3, pp. 1305ā1331, 2020. View at: Publisher Site  Google Scholar
 X. Cai, Z. L. Zhou, L. H. Tan, H. Z. Zang, and Z. Y. Song, āFracture behavior and damage mechanisms of sandstone subjected to wettingdrying cycles,ā Engineering Fracture Mechanics, vol. 234, Article ID 107109, 2020. View at: Publisher Site  Google Scholar
 X. Cai, Z. L. Zhou, and X. M. Du, āWaterinduced variations in dynamic behavior and failure characteristics of sandstone subjected to simulated geostress,ā Rock Mechanics and Rock Engineering, vol. 130, Article ID 104339, 2020. View at: Publisher Site  Google Scholar
 Z. Zhou, H. Wang, X. Cai, L. Chen, Y. E, and R. Cheng, āDamage evolution and failure behavior of postmainshock damaged rocks under aftershock effects,ā Energies, vol. 12, no. 23, p. 4429, 2019. View at: Publisher Site  Google Scholar
 D. Ma, H. Duan, X. Li, Z. Li, Z. Zhou, and T. Li, āEffects of seepageinduced erosion on nonlinear hydraulic properties of broken red sandstones,ā Tunnelling and Underground Space Technology, vol. 91, Article ID 102993, 2019. View at: Publisher Site  Google Scholar
 T. Bong and Y. Son, āProbabilistic analysis of weathered soil slope in South Korea,ā Advances in Civil Engineering, vol. 2018, Article ID 2120854, 12 pages, 2018. View at: Publisher Site  Google Scholar
 Y. Li, H. Zhang, X. Liu, G. Liu, D. Hu, and X. Meng, āTimevarying compressive strength model of aeolian sand concrete considering the harmful pore ratio variation and heterogeneous nucleation effect,ā Advances in Civil Engineering, vol. 2019, Article ID 8267601, 15 pages, 2019. View at: Publisher Site  Google Scholar
 E. Conte, A. Donato, L. Pugliese, and A. Troncone, āAnalysis of the maierato landslide (Calabria, southern Italy),ā Landslides, vol. 15, no. 10, pp. 1935ā1950, 2018. View at: Publisher Site  Google Scholar
 Q.j. Pan, X.r. Qu, and X. Wang, āProbabilistic seismic stability of threedimensional slopes by pseudodynamic approach,ā Journal of Central South University, vol. 26, no. 7, pp. 1687ā1695, 2019. View at: Publisher Site  Google Scholar
 E. Shamekhi and D. D. Tannant, āProbabilistic assessment of rock slope stability using response surfaces determined from finite element models of geometric realizations,ā Computers and Geotechnics, vol. 69, pp. 70ā81, 2015. View at: Publisher Site  Google Scholar
 D. V. Griffiths, J. Huang, and G. A. Fenton, āProbabilistic infinite slope analysis,ā Computers and Geotechnics, vol. 38, no. 4, pp. 577ā584, 2011. View at: Publisher Site  Google Scholar
 X. Wang, H. Wang, and R. Y. Liang, āA method for slope stability analysis considering subsurface stratigraphic uncertainty,ā Landslides, vol. 15, no. 5, pp. 925ā936, 2018. View at: Publisher Site  Google Scholar
 Z.P. Deng, D.Q. Li, X.H. Qi, Z.J. Cao, and K.K. Phoon, āReliability evaluation of slope considering geological uncertainty and inherent variability of soil parameters,ā Computers and Geotechnics, vol. 92, pp. 121ā131, 2017. View at: Publisher Site  Google Scholar
 K. Terzaghi, R. B. Peck, and G. Mesri, āSoil Mechanics in Engineering Practiceā, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 1996.
 S.l. Zhang, Z.h. Zhu, S.c. Qi, Y.x. Hu, Q. Du, and J.w. Zhou, āDeformation process and mechanism analyses for a planar sliding in the Mayanpo massive bedding rock slope at the Xiangjiaba hydropower station,ā Landslides, vol. 15, no. 10, pp. 2061ā2073, 2018. View at: Publisher Site  Google Scholar
 Y. Zhao, X.p. Zhou, and Q.h. Qian, āProgressive failure processes of reinforced slopes based on general particle dynamic method,ā Journal of Central South University, vol. 22, no. 10, pp. 4049ā4055, 2015. View at: Publisher Site  Google Scholar
 G. Zhang and L. Wang, āStability analysis of strainsoftening slope reinforced with stabilizing piles,ā Journal of Geotechnical and Geoenvironmental Engineering, vol. 136, no. 11, pp. 1578ā1582, 2010. View at: Publisher Site  Google Scholar
 X.r. Wang, Q.g. Rong, S.l. Sun, and H. Wang, āStability analysis of slope in strainsoftening soils using local arclength solution scheme,ā Journal of Mountain Science, vol. 14, no. 1, pp. 175ā187, 2017. View at: Publisher Site  Google Scholar
 L. Zhao, S. Zuo, D. Deng, Z. Han, and B. Zhao, āDevelopment mechanism for the landslide at Xinlu village, Chongqing, China,ā Landslides, vol. 15, no. 10, pp. 2075ā2081, 2018. View at: Publisher Site  Google Scholar
 K. Terzaghi and R. B. Peck, āSoil Mechanics in Engineering Practiceā, Wiley, New York, NY, USA, 1948.
 A. W. Bishop, āThe influence of progressive failure on the choice of the method of stability analysis,ā GĆ©otechnique, vol. 21, no. 2, pp. 168ā172, 1971. View at: Publisher Site  Google Scholar
 A. W. Skempton, āLongterm stability of clay slopes,ā GĆ©otechnique, vol. 14, no. 2, pp. 77ā102, 1964. View at: Publisher Site  Google Scholar
 D. A. Grivas and R. N. Chowdhury, āProbabilistic ĻĀ =Ā 0 stability analysis in strainsoftening soil,ā Structural Safety, vol. 1, no. 3, pp. 199ā210, 1982. View at: Publisher Site  Google Scholar
 R. N. Chowdhury, W. H. Tang, and I. Sidi, āReliability model of progressive slope failure,ā GĆ©otechnique, vol. 37, no. 4, pp. 467ā481, 1987. View at: Publisher Site  Google Scholar
 S. Metya, G. Bhattacharya, and R. Chowdhury, āReliability analysis of slopes in strainsoftening soils considering critical slip surfaces,ā Innovative Infrastructure Solutions, vol. 1, no. 1, pp. 1ā7, 2016. View at: Publisher Site  Google Scholar
 G. Bhattacharya, R. Chowdhury, and S. Metya, āResidual factor as a variable in slope reliability analysis,ā Bulletin of Engineering Geology and the Environment, vol. 78, no. 1, pp. 147ā166, 2019. View at: Publisher Site  Google Scholar
 K. Karuna and C. S. Manohar, āInverse problems in structural safety analysis with combined probabilistic and nonprobabilistic uncertainty models,ā Engineering Structures, vol. 150, pp. 166ā175, 2017. View at: Publisher Site  Google Scholar
 Y. Wang, P. Zhang, and G. Qin, āNonprobabilistic timedependent reliability analysis for suspended pipeline with corrosion defects based on interval model,ā Process Safety and Environmental Protection, vol. 124, pp. 290ā298, 2019. View at: Publisher Site  Google Scholar
 X.X. Liu and I. Elishakoff, āA combined importance sampling and active learning Kriging reliability method for small failure probability with random and correlated interval variables,ā Structural Safety, vol. 82, Article ID 101875, 2020. View at: Publisher Site  Google Scholar
 L. Dong, D. Sun, X. Li, and Z. Zhou, āInterval nonprobabilistic reliability of a surrounding jointed rockmass in underground engineering: a case study,ā IEEE Access, vol. 5, pp. 18804ā18817, 2017. View at: Publisher Site  Google Scholar
 L. Dong, D. Sun, and X. Li, āTheoretical and case studies of interval nonprobabilistic reliability for tailing dam stability,ā Geofluids, vol. 2017, Article ID 8745894, 11 pages, 2017. View at: Publisher Site  Google Scholar
 H. Su, J. Li, Z. Guo, and Z. Wen, āNonprobabilistic reliability evaluation for inservice gravity dam undergoing structural reinforcement,ā IEEE Transactions on Reliability, vol. 67, no. 3, pp. 970ā986, 2018. View at: Publisher Site  Google Scholar
 E. Conte, F. Silvestri, and A. Troncone, āStability analysis of slopes in soils with strainsoftening behaviour,ā Computers and Geotechnics, vol. 37, no. 5, pp. 710ā722, 2010. View at: Publisher Site  Google Scholar
 Z. Nie, Z. Zhang, and H. Zheng, āSlope stability analysis using convergent strength reduction method,ā Engineering Analysis with Boundary Elements, vol. 108, pp. 402ā410, 2019. View at: Publisher Site  Google Scholar
 Y. Chen and H. Lin, āConsistency analysis of HoekBrown and equivalent Mohrcoulomb parameters in calculating slope safety factor,ā Bulletin of Engineering Geology and the Environment, vol. 78, no. 6, pp. 4349ā4361, 2019. View at: Publisher Site  Google Scholar
 K. Zhang, P. Cao, and R. Bao, āProgressive failure analysis of slope with strainsoftening behaviour based on strength reduction method,ā Journal of Zhejiang UniversityScience A (Applied Physics & Engineering), vol. 14, no. 2, pp. 26ā34, 2013. View at: Publisher Site  Google Scholar
 G.H. Yang, Z.H. Zhong, X.D. Fu, Y.C. Zhang, Y. Wen, and M.F. Zhang, āSlope analysis based on local strength reduction method and variablemodulus elastoplastic model,ā Journal of Central South University, vol. 21, no. 5, pp. 2041ā2050, 2014. View at: Publisher Site  Google Scholar
 X.P. Zhou and X.C. Huang, āReliability analysis of slopes using UDbased response surface methods combined with LASSO,ā Engineering Geology, vol. 233, pp. 111ā123, 2018. View at: Publisher Site  Google Scholar
 D.Q. Li, D. Zheng, Z.J. Cao, X.S. Tang, and K.K. Phoon, āResponse surface methods for slope reliability analysis: review and comparison,ā Engineering Geology, vol. 203, pp. 3ā14, 2016. View at: Publisher Site  Google Scholar
 H. Basahel and H. Mitri, āProbabilistic assessment of rock slopes stability using the response surface approachāa case study,ā International Journal of Mining Science and Technology, vol. 29, no. 3, pp. 357ā370, 2019. View at: Publisher Site  Google Scholar
 D. R. Bhat, R. Yatabe, and N. P. Bhandary, āStudy of preexisting shear surfaces of reactivated landslides from a strength recovery perspective,ā Journal of Asian Earth Sciences, vol. 77, pp. 243ā253, 2013. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2020 Zilong Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.