Research Article

Prediction Compressive Strength of Concrete Containing GGBFS using Random Forest Model

Table 4

Comparison of different machine learning models for predicting compressive strength of concrete.

ReferenceMachine learning algorithmInputNumber of dataPerformance measure

Saridemir et al. [38]ANN and fuzzy logic models ANFIS5 inputs: TA, C, GGBFS, W, and Agg.284R = 0.9904

Bilim et al. [33]ANN model6 inputs: C, GGBFS, W, SP, Agg., and TA225R = 0.9798

Kandiri et al. [30]Hybridized multiobjective ANN and a multiobjective slap swarm algorithm (MOSSA)/the M5P model tree algorithm7 inputs: C, GGBFS, GGBFS grade (SG), W, fine Agg., coarse Agg., and TA624R = 0.9700

Han et al. [28]ANN model7 inputs: curing temperature, W/binder, GGBFS/total binder, W, fine Agg., coarse Agg., SP269R = 0.9803

Boukhatem et al. [29]ANN model5 inputs: C, W/C, GGBFS, temperature, TA726R = 0.9600

Boğa et al. [31]ANN model and the adaptive neuro-fuzzy inference system (ANFIS)4 inputs: cure type, curing period, BFS ratio, CNI ratio162R = 0.9854

This workRF model8 inputs: C, W, coarse Agg. or gravel, fine Agg. or sand, GGBFS, FA, SP, TA453R = 0.9729, MSE = 4.9585, MAE = 3.9423

C: cement; GGBFS: ground granulated blast furnace slag; W: water; SP: superplasticizer; TA: age of samples; FA: fly ash; Agg.: aggregate.