Table of Contents Author Guidelines Submit a Manuscript
Applied Computational Intelligence and Soft Computing
Volume 2009, Article ID 129761, 12 pages
Research Article

Intelligent Noise Removal from EMG Signal Using Focused Time-Lagged Recurrent Neural Network

Department of Applied Electronics, Sant Gadge Baba Amravati University, Amravati, 444602 Maharashtra, India

Received 5 November 2008; Revised 6 February 2009; Accepted 30 March 2009

Academic Editor: Zhigang Zeng

Copyright © 2009 S. N. Kale and S. V. Dudul. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Electromyography (EMG) signals can be used for clinical/biomedical application and modern human computer interaction. EMG signals acquire noise while traveling through tissue, inherent noise in electronics equipment, ambient noise, and so forth. ANN approach is studied for reduction of noise in EMG signal. In this paper, it is shown that Focused Time-Lagged Recurrent Neural Network (FTLRNN) can elegantly solve to reduce the noise from EMG signal. After rigorous computer simulations, authors developed an optimal FTLRNN model, which removes the noise from the EMG signal. Results show that the proposed optimal FTLRNN model has an MSE (Mean Square Error) as low as 0.000067 and 0.000048, correlation coefficient as high as 0.99950 and 0.99939 for noise signal and EMG signal, respectively, when validated on the test dataset. It is also noticed that the output of the estimated FTLRNN model closely follows the real one. This network is indeed robust as EMG signal tolerates the noise variance from 0.1 to 0.4 for uniform noise and 0.30 for Gaussian noise. It is clear that the training of the network is independent of specific partitioning of dataset. It is seen that the performance of the proposed FTLRNN model clearly outperforms the best Multilayer perceptron (MLP) and Radial Basis Function NN (RBF) models. The simple NN model such as the FTLRNN with single-hidden layer can be employed to remove noise from EMG signal.