Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2011, Article ID 104843, 16 pages
Research Article

Two-Dimensional Electron Systems in Magnetic Fields: The Current Equipartition Law

Physics Laboratory, The Jikei University School of Medicine, 8-3-1 Kokuryo-cho, Chofu, Tokyo182-8570, Japan

Received 15 March 2011; Revised 9 July 2011; Accepted 30 August 2011

Academic Editor: Sergio E. Ulloa

Copyright © 2011 Tsuyoshi Ueta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We consider two-dimensional randomly deformed circular quantum dots with two attached waveguides (an emitter and a collector) in magnetic fields as an electronic analogy of the blackbody radiation. Transport properties through them are numerically investigated. The fraction of the current carried by each propagating mode in the collector is computed for transmission currents when each propagating mode is incident. By taking the statistical average in shape, it is shown that a universal frequency distribution is obtained for a sufficiently deformed system even though magnetic fields are so strong that electron waves form edge states. Then, the transmission currents are randomly distributed over all propagating modes. On average, each propagating mode carries the same current as in the absence of a magnetic field. It is also confirmed that a finite size dot cannot be a model of a reservoir even if it is chaotic.