Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2011, Article ID 637170, 5 pages
http://dx.doi.org/10.1155/2011/637170
Research Article

Dielectric Properties of 0.95 ( P b 𝟏 𝟑 𝑥 / 𝟐 L a 𝑥 Z r 𝟎 . 𝟔 𝟓 T i 𝟎 . 𝟑 𝟓 O 𝟑 )-0.05 ( N i 𝟎 . 𝟖 Z n 𝟎 . 𝟐 F e 𝟐 O 𝟒 ) Composites

1Electroceramics Research Lab, GVM Girls College, Sonepat 131001, India
2School of Physics & Material Science, Thapar University, Patiala 147004, India
3Department of Physics, Hindu College, Sonepat 131001, India
4Directorate of ER&IPR, DRDO, DRDO Bhawan, New Delhi 110105, India

Received 6 March 2011; Accepted 5 August 2011

Academic Editor: R. N. P. Choudhary

Copyright © 2011 Rekha Rani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Lottermoser and M. Fiebig, “Magnetoelectric behavior of domain walls in multiferroic HoMnO3,” Physical Review B, vol. 70, no. 22, pp. 220407-1–220407-4, 2004. View at Publisher · View at Google Scholar
  2. J. Wang, J. B. Neaton, H. Zheng et al., “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science, vol. 299, no. 5613, pp. 1719–1722, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, “Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites,” Japanese Journal of Applied Physics, vol. 40, no. 8, pp. 4948–4951, 2001. View at Google Scholar
  4. G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, “Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides,” Physical Review B, vol. 65, no. 13, Article ID 134402, pp. 1344021–1344027, 2002. View at Google Scholar · View at Scopus
  5. S. X. Dong, J.-F. Li, and D. Viehland, “Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse-transverse modes,” Journal of Applied Physics, vol. 95, no. 5, pp. 2625–2630, 2004. View at Publisher · View at Google Scholar
  6. M. Fiebig, “Revival of the magnetoelectric effect,” Journal of Physics D, vol. 40, pp. R123–R152, 2005. View at Google Scholar
  7. R. S. Devan, S. A. Lokare, D. R. Patil, S. S. Chougule, Y. D. Kolekar, and B. K. Chougule, “Electrical conduction and magnetoelectric effect of (x) BaTiO3 + (1-x) Ni0.92Co0.03Cu0.05Fe2O4 composites in ferroelectric rich region,” Journal of Physics and Chemistry of Solids, vol. 67, no. 7, pp. 1524–1530, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C.-W. Nan, “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases,” Physical Review B, vol. 50, no. 9, pp. 6082–6088, 1994. View at Publisher · View at Google Scholar
  9. S. Dutta, R. N. P. Choudhary, and P. K. Sinha, “Impedance spectroscopy studies on Fe3+ ion modified PLZT ceramics,” Ceramics International, vol. 33, no. 1, pp. 13–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Miga and K. Wojcik, “Investigation of the diffuse phase transition in PLZT X/65/35 ceramics, X = 7-10,” Ferroelectrics, vol. 100, no. 1, pp. 167–173, 1989. View at Google Scholar
  11. B. Jaffe, R. S. Roth, and S. Marzullo, “Piezoelectric properties of Lead zirconate-Lead titanate solid-solution ceramics,” Journal of Applied Physics, vol. 25, no. 6, pp. 809–810, 1954. View at Publisher · View at Google Scholar
  12. W. E. Kramer, R. H. Hopkins, and M. R. Daniel, “Growth of oxide in situ composites: the systems lithium ferrite-lithium niobate, lithium ferrite-lithium tantalate, and nickel ferrite-barium titanate,” Journal of Materials Science, vol. 12, no. 2, pp. 409–414, 1977. View at Publisher · View at Google Scholar · View at Scopus
  13. R. V. Mangalaraja, S. Ananthakumar, P. Manohar, and F. D. Gnanam, “Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique,” Journal of Magnetism and Magnetic Materials, vol. 253, no. 1-2, pp. 56–64, 2002. View at Publisher · View at Google Scholar
  14. A. S. Fawzi, A. D. Sheikh, and V. L. Mathe, “Multiferroic properties of Ni ferrite-PLZT composites,” Physica B, vol. 405, no. 1, pp. 340–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Robner, Sinterverhalten und elektrische eigenschaften von neodym dotierter bleizirkonat-bleititanat-keramik, hergestellt nach dem mixed-oxide-verfahren. Dissertation, Ph.D. thesis, University of Erlangen, Berlin, Germany, 1985.
  16. K. Carl and K. H. Hardtl, “Strukturelle und elektromechanische eigenschaften ladotierter Pb(Ti1-xZrx)O3-keramiken,” Berichte der Deutschen Keramischen Gesellschaft, vol. 47, pp. 687–691, 1970. View at Google Scholar
  17. C. Prakash and O. P. Thakur, “Effects of samarium modification on the structural and dielectric properties of PLZT ceramics,” Materials Letters, vol. 57, no. 15, pp. 2310–2314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. H. R. Rukmini, R. N. P. Choudhary, and D. L. Prabhakara, “Effect of sintering temperature on dielectric properties of Pb0.91(La1-z/3Liz) 0.09(Zr0.65Ti0.35) 0.9775O3 ceramics,” Materials Letters, vol. 44, no. 2, pp. 96–104, 2000. View at Google Scholar
  19. D. C. Agarwal, Asian Journal of Physics, vol. 6, p. 108, 1947.