Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2011, Article ID 792125, 7 pages
http://dx.doi.org/10.1155/2011/792125
Research Article

Breakdown of Counterflow Superfluidity in a Disordered Quantum Hall Bilayer

1Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
2School of Physics, Trinity College, Dublin 2, Ireland
3Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK

Received 1 September 2010; Accepted 12 January 2011

Academic Editor: Yogesh Joglekar

Copyright © 2011 D. K. K. Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, “Many-body integer quantum Hall effect: evidence for new phase transitions,” Physical Review Letters, vol. 72, no. 5, pp. 728–731, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. T. S. Lay, Y. W. Suen, H. C. Manoharan, X. Ying, M. B. Santos, and M. Shayegan, “Anomalous temperature dependence of the correlated ν=1 quantum Hall effect in bilayer electron systems,” Physical Review B, vol. 50, no. 23, pp. 17725–17728, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. B. I. Halperin, “Theory of the quantized hall conductance,” Helvetica Physica Acta, vol. 56, p. 75, 1983. View at Google Scholar
  4. H. A. Fertig, “Energy spectrum of a layered system in a strong magnetic field,” Physical Review B, vol. 40, no. 2, pp. 1087–1095, 1989. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Eisenstein and A. H. MacDonald, “Bose-Einstein condensation of excitons in bilayer electron systems,” Nature, vol. 432, no. 7018, pp. 691–694, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. X. G. Wen and A. Zee, “Neutral superfluid modes and magnetic monopoles in multilayered quantum Hall systems,” Physical Review Letters, vol. 69, no. 12, pp. 1811–1814, 1992. View at Publisher · View at Google Scholar
  7. X. G. Wen and A. Zee, “Superfluidity and superconductivity in double-layered quantum Hall state,” International Journal of Modern Physics B, vol. 17, no. 25, pp. 4435–4446, 2003. View at Publisher · View at Google Scholar
  8. X. G. Wen and A. Zee, “Tunneling in double-layered quantum Hall systems,” Physical Review B, vol. 47, no. 4, pp. 2265–2270, 1993. View at Publisher · View at Google Scholar
  9. Z. F. Ezawa and A. Iwazaki, “Lowest-Landau-level constraint, Goldstone mode, and Josephson effect in a double-layer quantum Hall system,” Physical Review B, vol. 48, no. 20, pp. 15189–15197, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Tiemann, W. Dietsche, M. Hauser, and K. von Klitzing, “Critical tunneling currents in the regime of bilayer excitons,” New Journal of Physics, vol. 10, Article ID 045018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, and W. Wegscheider, “Dominant parameters for the critical tunneling current in bilayer exciton condensates,” Physical Review B, vol. 80, no. 16, Article ID 165120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-J. Su and A. H. MacDonald, “Critical tunneling currents in quantum Hall superfluids: pseudospin-transfer torque theory,” Physical Review B, vol. 81, no. 18, Article ID 184523, 11 pages, 2010. View at Publisher · View at Google Scholar
  13. I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet,” Physical Review Letters, vol. 84, no. 25, pp. 5808–5811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Eisenstein, “Evidence for spontaneous interlayer phase coherence in a bilayer quantum Hall exciton condensate,” Solid State Communications, vol. 127, no. 2, pp. 123–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. L. Jack, D. K. K. Lee, and N. R. Cooper, “Dissipation and tunneling in quantum Hall bilayers,” Physical Review Letters, vol. 93, no. 12, Article ID 126803, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Stern, S. M. Girvin, A. H. MacDonald, and N. Ma, “Theory of interlayer tunneling in bilayer quantum Hall ferromagnets,” Physical Review Letters, vol. 86, no. 9, pp. 1829–1832, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Balents and L. Radzihovsky, “Interlayer tunneling in double-layer quantum Hall pseudoferromagnets,” Physical Review Letters, vol. 86, no. 9, pp. 1825–1828, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. P. R. Eastham, N. R. Cooper, and D. K.K. Lee, “Critical supercurrents and self-organization in quantum Hall bilayers,” Physical Review Letters, vol. 105, no. 23, Article ID 236805, 4 pages, 2010. View at Publisher · View at Google Scholar
  19. A. D. K. Finck, A. R. Champagne, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Area dependence of interlayer tunneling in strongly correlated bilayer two-dimensional electron systems at νT=1,” Physical Review B, vol. 78, no. 7, Article ID 075302, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. V. Fil and S. I. Shevchenko, “Josephson vortex motion as a source for dissipation of superflow of e-h pairs in bilayers,” Journal of Physics Condensed Matter, vol. 21, no. 21, Article ID 215701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Abolfath, A. H. MacDonald, and L. Radzihovsky, “Critical currents of ideal quantum Hall superfluids,” Physical Review B, vol. 68, no. 15, Article ID 155318, 16 pages, 2003. View at Google Scholar · View at Scopus
  22. E. Tutuc, M. Shayegan, and D. A. Huse, “Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing,” Physical Review Letters, vol. 93, no. 3, Article ID 036802, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system,” Physical Review Letters, vol. 93, no. 3, Article ID 036801, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. O. G. C. Ros and D. K. K. Lee, “Effect of disorder and electron-phonon interaction on interlayer tunneling current in quantum Hall bilayer,” Physical Review B, vol. 81, no. 7, Article ID 075115, 7 pages, 2010. View at Publisher · View at Google Scholar
  25. E. Rossi, A. S. Núñez, and A. H. MacDonald, “Interlayer transport in bilayer quantum Hall systems,” Physical Review Letters, vol. 95, no. 26, Article ID 266804, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. H. A. Fertig and G. Murthy, “Coherence network in the quantum Hall bilayer,” Physical Review Letters, vol. 95, no. 15, Article ID 156802, 4 pages, 2005. View at Publisher · View at Google Scholar
  27. P. R. Eastham, N. R. Cooper, and D. K. K. Lee, “Vortex states of a disordered quantum Hall bilayer,” Physical Review B, vol. 80, no. 4, Article ID 045302, 5 pages, 2009. View at Publisher · View at Google Scholar
  28. M. M. Fogler and F. Wilczek, “Josephson effect without superconductivity: realization in quantum Hall bilayers,” Physical Review Letters, vol. 86, no. 9, pp. 1833–1836, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Roostaei, K. J. Mullen, H. A. Fertig, and S. H. Simon, “Theory of activated transport in bilayer quantum Hall systems,” Physical Review Letters, vol. 101, no. 4, Article ID 046804, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Bak, “Commensurate phases, incommensurate phases and the devil's staircase,” Reports on Progress in Physics, vol. 45, no. 6, pp. 587–629, 1982. View at Publisher · View at Google Scholar
  31. M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York, NY, USA, 1996.
  32. A. I. Larkin and Y. N. Ovchinnikov, “Pinning in type II superconductors,” Journal of Low Temperature Physics, vol. 34, no. 3-4, pp. 409–428, 1979. View at Publisher · View at Google Scholar · View at Scopus
  33. V. M. Vinokur and A. E. Koshelev, “Collective flux pinning in extended Josephson junctions,” Soviet Physics JETP, vol. 70, p. 547, 1990. View at Google Scholar
  34. H. Fukuyama and P. A. Lee, “Dynamics of the charge-density wave—I. Impurity pinning in a single chain,” Physical Review B, vol. 17, no. 2, pp. 535–541, 1978. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Imry and S. K. Ma, “Random-field instability of the ordered state of continuous symmetry,” Physical Review Letters, vol. 35, no. 21, pp. 1399–1401, 1975. View at Publisher · View at Google Scholar · View at Scopus
  36. P. B. Littlewood and T. M. Rice, “Metastability of the Q vector of pinned charge- and spin-density waves,” Physical Review Letters, vol. 48, no. 1, pp. 44–47, 1982. View at Publisher · View at Google Scholar
  37. Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, and W. Wegscheider, “Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers,” Physical Review Letters, vol. 104, no. 11, Article ID 116802, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Gilbert, “Finite-temperature pseudospin torque effect in graphene bilayers,” Physical Review B, vol. 82, no. 16, Article ID 165408, 12 pages, 2010. View at Publisher · View at Google Scholar
  39. D. A. Huse, “Resistance due to vortex motion in the ν=1 bilayer quantum Hall superfluid,” Physical Review B, vol. 72, no. 6, Article ID 064514, 4 pages, 2005. View at Publisher · View at Google Scholar
  40. T. Hyart and B. Rosenow, “Quantitative description of Josephson-liketunneling in νT=1 quantum Hall bilayers,” preprint, http://arxiv.org/abs/1011.5684v1.
  41. S. N. Coppersmith, “Phase slips and the instability of the Fukuyama-Lee-Rice model of charge-density waves,” Physical Review Letters, vol. 65, no. 8, pp. 1044–1047, 1990. View at Publisher · View at Google Scholar · View at Scopus