Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 176053, 7 pages
http://dx.doi.org/10.1155/2012/176053
Research Article

Ge/Si Quantum Dots Superlattices Grown at Different Temperatures and Characterized by Raman Spectroscopy and Capacitance Measurements

1Department of Physics, Federal University of São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil
2Institute of Semiconductor Physics, Novosibirsk 630090, Russia
3Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany

Received 28 March 2012; Accepted 31 July 2012

Academic Editor: Michael C. Tringides

Copyright © 2012 A. D. Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. L. Wang, J. L. Liu, and G. Jin, “Self-assembled Ge quantum dots on Si and their applications,” Journal of Crystal Growth, vol. 237–239, no. 1–4, pp. 1892–1897, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Banerjee, S. Nozaki, and H. Morisaki, “Coulomb-blockade effect observed at room temperature in Ge nanocrystalline films deposited by the cluster-beam evaporation technique,” Applied Physics Letters, vol. 76, no. 4, pp. 445–447, 2000. View at Google Scholar · View at Scopus
  3. W. K. Choi, W. K. Chim, C. L. Heng et al., “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure,” Applied Physics Letters, vol. 80, no. 11, pp. 2014–2016, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. X. Jie, Y. N. Xiong, A. T. S. Wee, C. H. A. Huan, and W. Ji, “Dynamics of optical nonlinearity of Ge nanocrystals in a silica matrix,” Applied Physics Letters, vol. 77, no. 24, pp. 3926–3928, 2000. View at Google Scholar · View at Scopus
  5. J. L. Liu, G. Jin, Y. S. Tang, Y. H. Luo, K. L. Wang, and D. P. Yu, “Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices,” Applied Physics Letters, vol. 76, no. 5, pp. 586–588, 2000. View at Google Scholar · View at Scopus
  6. G. Matmon, D. J. Paul, L. Lever et al., “Si/SiGe quantum cascade superlattice designs for terahertz emission,” Journal of Applied Physics, vol. 107, no. 5, Article ID 053109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. A. Markov, H. H. Cheng, C. T. Chia et al., “RHEED studies of nucleation of Ge islands on Si(001) and optical properties of ultra-small Ge quantum dots,” Thin Solid Films, vol. 369, no. 1, pp. 79–83, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Capellini, M. De Seta, and F. Evangelisti, “SiGe intermixing in Ge/Si(100) islands,” Applied Physics Letters, vol. 78, no. 3, pp. 303–305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. W. Dashiell, U. Denker, C. Müller et al., “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,” Applied Physics Letters, vol. 80, no. 7, pp. 1279–1281, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Brehm, M. Grydlik, H. Groiss et al., “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” Journal of Applied Physics, vol. 109, no. 12, Article ID 123505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Ratto, F. Rosei, A. Locatelli et al., “Composition of Ge(Si) islands in the growth of Ge on Si(111),” Applied Physics Letters, vol. 84, no. 22, pp. 4526–4528, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. G. Milekhin, A. I. Nikiforov, M. Y. Ladanov et al., “Phonons in Ge/Si quantum dot structures: influence of growth temperature,” Physica E, vol. 21, no. 2–4, pp. 464–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. I. Alonso and K. Winer, “Raman spectra of c-Si1-xGex alloys,” Physical Review B, vol. 39, no. 14, pp. 10056–10062, 1989. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Renucci, J. B. Renucci, R. Zeyher, and M. Cardona, “Second-order Raman scattering in germanium in the vicinity of the E1, E1 + Δ1 edges,” Physical Review B, vol. 10, no. 10, pp. 4309–4323, 1974. View at Publisher · View at Google Scholar · View at Scopus
  15. S. H. Kwok, P. Y. Yu, C. H. Tung et al., “Confinement and electron-phonon interactions of the E1 exciton in self-organized Ge quantum dots,” Physical Review B, vol. 59, no. 7, pp. 4980–4984, 1999. View at Google Scholar · View at Scopus
  16. F. Cerdeira, A. Pinczuk, and J. C. Bean, “Observation of confined electronic states in GexSi1-xSi strained-layer superlattices,” Physical Review B, vol. 31, no. 2, pp. 1202–1204, 1985. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Schorer, G. Abstreiter, H. Kibbel, and H. Presting, “Resonant-Raman-scattering study on short-period Si/Ge superlattices,” Physical Review B, vol. 50, no. 24, pp. 18211–18218, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. A. G. Milekhin, D. Tenne, and D. R. T. Zahn(, “Quantum dot structures: raman and infrared spectroscopy,” in Quantum Dots and Nanowires, S. Bandyopadhyay and H. S. Nalwa, Eds., pp. 375–419, American Scientific, California, Calif, USA, 2003. View at Google Scholar
  19. A. J. Chiquito, Y. A. Pusep, S. Mergulhão, and J. C. Galzerani, “Carrier confinement in an ultrathin barrier GaAs/AlAs superlattice probed by capacitance-voltage measurements,” Physica E, vol. 13, no. 1, pp. 36–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Sze, Physics of Semiconductors Devices, John Wiley and Sons, New York, NY, USA, 1981.
  21. A. J. Chiquito, Y. A. Pusep, S. Mergulhão, J. C. Galzerani, and N. T. Moshegov, “Effect of photogenerated holes on capacitance-voltage measurements in InAs/GaAs self-assembled quantum dots,” Physical Review B, vol. 61, no. 7, pp. 4481–4484, 2000. View at Google Scholar · View at Scopus
  22. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and O. P. Pchelyakov, “Formation of zero-dimensional hole states in Ge/Si heterostructures probed with capacitance spectroscopy,” Thin Solid Films, vol. 336, no. 1-2, pp. 332–335, 1998. View at Google Scholar · View at Scopus
  23. A. J. Chiquito and M. G. de Souza, “Temperature dependence of the electron distribution in a GaAs matrix with embedded InAs quantum dots,” Physica E, vol. 25, no. 4, pp. 613–618, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. J. Chiquito, Y. A. Pusep, S. Mergulhão, J. C. Galzerani, and N. T. Moshegov, “Capacitance-voltage profile in a structure with negative differential capacitance caused by the presence of InAs/GaAs self-assembled quantum dots,” Physical Review B, vol. 61, no. 8, pp. 5499–5504, 2000. View at Google Scholar · View at Scopus