Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013, Article ID 234546, 11 pages
http://dx.doi.org/10.1155/2013/234546
Research Article

Structural, Optical Constants and Photoluminescence of ZnO Thin Films Grown by Sol-Gel Spin Coating

1Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6279, Université de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex, France
2National Institute of Laser Enhanced Science, Laser Sciences and Interactions, Cairo University, Giza 12613, Egypt
3Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt

Received 8 May 2013; Revised 17 August 2013; Accepted 4 September 2013

Academic Editor: Yuri Galperin

Copyright © 2013 Abdel-Sattar Gadallah and M. M. El-Nahass. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Ü. Özgür, D. Hofstetter, and H. Morkoc, “ZnO devices and applications: a review of current status and future prospects,” Proceedings of the IEEE, vol. 98, pp. 1255–1268, 2010. View at Publisher · View at Google Scholar
  2. A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Applied Physics Letters, vol. 102, no. 17, Article ID 171105, 4 pages, 2013. View at Publisher · View at Google Scholar
  3. M. G. Ali, S. Singh, and P. Chakrabarti, “Ultraviolet ZnO photodetectors with high gain,” Journal of Electronic Science and Technology, vol. 8, pp. 55–59, 2010. View at Google Scholar
  4. Y.-H. Lin, P.-C. Yang, J.-S. Huang et al., “High-efficiency inverted polymer solar cells with solution-processed metal oxides,” Solar Energy Materials and Solar Cells, vol. 95, no. 8, pp. 2511–2515, 2011. View at Publisher · View at Google Scholar
  5. L. J. Mandalapu, Z. Yang, S. Chu, and J. L. Liu, “Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes,” Applied Physics Letters, vol. 92, no. 12, Article ID 122101, 3 pages, 2008. View at Publisher · View at Google Scholar
  6. S. S. Badadhe and I. S. Mulla, “Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis,” Sensors and Actuators B, vol. 156, no. 2, pp. 943–948, 2011. View at Publisher · View at Google Scholar
  7. Y. W. Heo, D. P. Norton, and S. J. Pearton, “Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy,” Journal of Applied Physics, vol. 98, no. 7, Article ID 073502, 6 pages, 2005. View at Publisher · View at Google Scholar
  8. S. T. Tan, B. J. Chen, X. W. Sun et al., “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition,” Journal of Applied Physics, vol. 98, no. 1, Article ID 013505, 5 pages, 2005. View at Publisher · View at Google Scholar
  9. Q. P. Wang, X. J. Zhang, C. Q. Wang, S. H. Chen, X. H. Wu, and H. L. Ma, “Influence of excitation light wavelength on the photoluminescence properties for ZnO films prepared by magnetron sputtering,” Applied Surface Science, vol. 254, no. 16, pp. 5100–5104, 2008. View at Publisher · View at Google Scholar
  10. K. C. Kim, E. K. Kim, and Y. S. Kim, “Growth and physical properties of sol-gel derived Co doped ZnO thin film,” Superlattices and Microstructures, vol. 42, pp. 246–250, 2007. View at Publisher · View at Google Scholar
  11. Y. Kim, W. Tai, and S. Shu, “Effect of preheating temperature on structural and optical properties of ZnO thin films by sol-gel process,” Thin Solid Films, vol. 491, no. 1-2, pp. 153–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Chakrabarti, D. Ganguli, and S. Chaudhuri, “Substrate dependence of preferred orientation in sol-gel-derived zinc oxide films,” Materials Letters, vol. 58, no. 30, pp. 3952–3957, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. H. Aslan, A. Y. Oral, E. Menşur, A. Gül, and E. Basşaran, “Preparation of C-axis-oriented zinc-oxide thin films and the study of their microstructure and optical properties,” Solar Energy Materials and Solar Cells, vol. 82, pp. 543–552, 2004. View at Google Scholar
  14. M. M. El-Nahass, “Optical properties of tin diselenide films,” Journal of Materials Science, vol. 27, no. 24, pp. 6597–6604, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Bakry and A. H. El-Naggar, “Doping effects on the optical properties of evaporated a-Si:H films,” Thin Solid Films, vol. 360, no. 1-2, pp. 293–297, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Murmann, “Der spektrale Verlauf der anomalen optischen Konstanten dünnen Silbers,” Zeitschrift für Physik, vol. 101, no. 9-10, pp. 643–648, 1936. View at Publisher · View at Google Scholar · View at Scopus
  17. B. D. Cullity and S. Rstock, Elements of X-Ray Diffraction, Prentice Hall, New Jersey, NJ, USA, 2001.
  18. G. B. Williamson and R. C. Smallman, “Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum,” Philosophical Magazine, vol. 1, no. 1, pp. 34–46, 1956. View at Publisher · View at Google Scholar
  19. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, NY, USA, 1974.
  20. Y. G. Wang, S. P. Lau, H. W. Lee et al., “Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature,” Journal of Applied Physics, vol. 94, no. 3, pp. 1597–1604, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. O'Brien, L. H. K. Koh, and G. M. Crean, “ZnO thin films prepared by a single step sol-gel process,” Thin Solid Films, vol. 516, no. 7, pp. 1391–1395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. E. Benouis, A. Sanchez-Juarez, and M. S. Aida, “Physics properties comparison between undoped ZnO and AZO, IZO doped thin films prepared by spray pyrolysis,” Journal of Applied Sciences, vol. 7, no. 2, pp. 220–225, 2007. View at Google Scholar · View at Scopus
  23. M. Di Giulio, G. Miccci, R. Rella, P. Siciliano, and A. Tepore, “Optical absorption of tellurium suboxide thin films,” Physica Status Solidi A, vol. 136, pp. K101–K104, 1993. View at Publisher · View at Google Scholar
  24. J. Tauc, Amorphous and Liquid Semiconductors, Plenum, London, UK, 1974.
  25. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Physical Review, vol. 92, no. 5, pp. 1324–1324, 1953. View at Publisher · View at Google Scholar
  26. S. H. Wemple and M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Physical Review B, vol. 3, no. 4, pp. 1338–1351, 1971. View at Publisher · View at Google Scholar · View at Scopus
  27. P. O. Edward, Handbook of Optical Constants of Solids, Academic Press, New York, NY, USA, 1985.
  28. B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Applied Physics Letters, vol. 79, no. 7, p. 943, 2001. View at Publisher · View at Google Scholar
  29. X. Q. Zhang, I. Suemune, H. Kumano, J. Wang, and S. H. Huang, “Surface-emitting stimulated emission in high-quality ZnO thin films,” Journal of Applied Physics, vol. 96, no. 7, pp. 3733–3736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Peres, S. Magalhães, M. R. Soares et al., “Disorder induced violet/blue luminescence in rf-deposited ZnO films,” Physica Status Solidi C, vol. 10, no. 4, pp. 662–666, 2013. View at Google Scholar
  31. T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Physical Review B, vol. 45, no. 16, pp. 8989–8994, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Applied Physics Letters, vol. 73, no. 8, pp. 1038–1040, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. F. M. Smits, “Measurement of sheet resistivities with the four-point probe,” Bell System Technical Journal, vol. 37, no. 3, pp. 711–718, 1958. View at Publisher · View at Google Scholar