Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013, Article ID 509374, 5 pages
http://dx.doi.org/10.1155/2013/509374
Research Article

Intense Red Upconversion Emission and Shape Controlled Synthesis of Gd2O3:Yb/Er Nanocrystals

College of Physics and Information Science and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, China

Received 5 October 2013; Accepted 23 October 2013

Academic Editor: Jianhua Hao

Copyright © 2013 Zhigao Yi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G.-Y. Adachi and N. Imanaka, “The binary rare earth oxides,” Chemical Reviews, vol. 98, no. 4, pp. 1479–1514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chemistry of Materials, vol. 14, no. 7, pp. 2915–2921, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Wang, X.-M. Sun, D. P. Yu, B.-S. Zou, and Y. D. Li, “Rare earth compound nanotubes,” Advanced Materials, vol. 15, no. 17, pp. 1442–1445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Z.-L. Wang, J. H. Hao, H. L. W. Chan, W.-T. Wong, and K.-L. Wong, “A strategy for simultaneously realizing the cubic-to-hexagonal phase transition and controlling the small size of NaYF4:Yb3+, Er3+ nanocrystals for in vitro cell imaging,” Small, vol. 8, no. 12, pp. 1863–1868, 2012. View at Publisher · View at Google Scholar
  5. X. Wang and Y. D. Li, “Synthesis and characterization of lanthanide hydroxide single-crystal nanowires,” Angewandte Chemie International Edition, vol. 41, no. 24, pp. 4790–4793, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Zhou, G. X. Chen, E. Wu et al., “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Letters, vol. 13, no. 5, pp. 2241–2246, 2013. View at Publisher · View at Google Scholar
  7. G. Z. Ren, S. J. Zeng, and J. H. Hao, “Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods,” Journal of Physical Chemistry C, vol. 115, no. 41, pp. 20141–20147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. F. Zhou, N. J. Jiang, K. Miura et al., “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” Journal of the American Chemical Society, vol. 132, no. 50, pp. 17945–17952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Zeng, J. J. Xiao, Q. B. Yang, and J. H. Hao, “Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties,” Journal of Materials Chemistry, vol. 22, no. 19, pp. 9870–9874, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. Zeng, M.-K. Tsang, C.-F. Chan, K.-L. Wong, and J. H. Hao, “PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging,” Biomaterials, vol. 33, no. 36, pp. 9232–9238, 2012. View at Publisher · View at Google Scholar
  11. E. W. Barrera, M. C. Pujol, F. Díaz et al., “Emission properties of hydrothermal Yb3+, Er3+ and Yb3+, Tm3+-codoped Lu2O3 nanorods: upconversion, cathodoluminescence and assessment of waveguide behavior,” Nanotechnology, vol. 22, no. 7, Article ID 075205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” Journal of Physical Chemistry B, vol. 108, no. 50, pp. 19205–19209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Guo, Y. F. Li, D. Y. Wang et al., “Blue upconversion of cubic Gd2O3:Er produced by green laser,” Journal of Alloys and Compounds, vol. 376, no. 1-2, pp. 23–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Hirai and T. Orikoshi, “Preparation of Gd2O3:Yb, Er and Gd2O2S:Yb, Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system,” Journal of Colloid and Interface Science, vol. 269, no. 1, pp. 103–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Dosev, I. M. Kennedy, M. Godlewski, I. Gryczynski, K. Tomsia, and E. M. Goldys, “Fluorescence upconversion in Sm-doped Gd2O3,” Applied Physics Letters, vol. 88, no. 1, Article ID 011906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. D. Sun, J. Yao, C. H. Liu, C. S. Liao, and C. H. Yan, “Rare earth activated nanosized oxide phosphors: synthesis and optical properties,” Journal of Luminescence, vol. 87–89, pp. 447–450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Brenier and G. Boulon, “Laser heated pedestal growth and spectroscopic investigations of Nd3+-doped Gd2O3 single crystal fibres,” Journal of Luminescence, vol. 82, no. 4, pp. 285–289, 1999. View at Google Scholar · View at Scopus
  18. A. Brenier, “Laser-heated pedestal growth of Er3+-doped Gd2O3 single crystal fibres and up-conversion processes,” Chemical Physics Letters, vol. 290, no. 4–6, pp. 329–334, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Bai, H. W. Song, G. H. Pan et al., “Improved upconversion luminescence properties of Gd2O3:Er3+/Gd2O3:Yb3+ core-shell nanorods,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 4, pp. 2677–2681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M.-A. Fortin, R. M. P. Petoral Jr., F. Soderlind et al., “Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning,” Nanotechnology, vol. 18, no. 39, Article ID 395501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. P. Li, J. H. Zhang, Y. S. Luo, X. Zhang, Z. D. Hao, and X. J. Wang, “Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er 3+ and Tm3+ tri-doped Lu2O3 nanocrystals,” Journal of Materials Chemistry, vol. 21, no. 9, pp. 2895–2900, 2011. View at Publisher · View at Google Scholar · View at Scopus