Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013, Article ID 752060, 11 pages
http://dx.doi.org/10.1155/2013/752060
Research Article

Polar Liquid Crystal Elastomers Cross Linked Far from Thermodynamic Phase Transitions: Dislocation Loops in Smectic Clusters

1Physics Department, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta 55281, Indonesia
2Department of Applied Quantum Physics and Nuclear Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
3Makromolekulare Chemie, Universität Freiburg, 79104 Freiburg, Germany
4Advanced Liquid Crystal Technologies, P.O. Box 1314, Summit, NJ 07902, USA
5Department of Life Engineering, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan

Received 5 February 2013; Accepted 16 June 2013

Academic Editor: Michael C. Tringides

Copyright © 2013 Yusril Yusuf et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Finkelmann, H. J. Kock, and G. Rehage, “Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers—a new type of liquid crystalline material,” Macromolecular Rapid Communications, vol. 2, no. 4, pp. 317–322, 1981. View at Publisher · View at Google Scholar
  2. J. Küpfer and H. Finkelmann, “Nematic liquid single crystal elastomers,” Macromolecular Rapid Communications, vol. 12, no. 12, pp. 717–726, 1991. View at Publisher · View at Google Scholar
  3. W. Kaufhold, H. Finkelmann, and H. R. Brand, “Nematic elastomers, 1. Effect of the spacer length on the mechanical coupling between network anisotropy and nematic order,” Die Makromolekulare Chemie, vol. 192, no. 11, pp. 2555–2579, 1991. View at Publisher · View at Google Scholar
  4. J. Küpfer and H. Finkelmann, “Liquid crystal elastomers: influence of the orientational distribution of the crosslinks on the phase behaviour and reorientation processes,” Macromolecular Chemistry and Physics, vol. 195, no. 4, pp. 1353–1367, 1994. View at Publisher · View at Google Scholar
  5. I. Kundler and H. Finkelmann, “Director reorientation via stripe-domains in nematic elastomers: influence of cross-link density, anisotropy of the network and smectic clusters,” Macromolecular Chemistry and Physics, vol. 199, no. 4, pp. 677–686, 1998. View at Publisher · View at Google Scholar
  6. H. R. Brand and K. Kawasaki, “On the macroscopic consequences of frozen order in liquid single crystal elastomers,” Macromolecular Rapid Communications, vol. 15, no. 3, pp. 251–257, 1994. View at Publisher · View at Google Scholar
  7. D. U. Cho, Y. Yusuf, P. E. Cladis, H. R. Brand, H. Finkelmann, and S. Kai, “Trifunctionally cross-linked liquid single crystal elastomers: swelling dynamics and electromechanical effects,” Japanese Journal of Applied Physics A, vol. 46, no. 3, pp. 1106–1113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Krause, Nematische Hauptkettenelastomere Synthese und Untersuchung der mechanischen Eigenschaften und der Ordnungszustandes, Albert-Ludwigs-Universität Freiburg, 2008.
  9. Y. Yusuf, S. Hashimoto, P. E. Cladis et al., “Main chain liquid-crystalline elastomers: swelling dynamics and electromechanical effects,” Molecular Crystals and Liquid Crystals, vol. 508, pp. 367–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. E. Cladis, P. L. Finn, and J. W. Goodby, in Liquid Crystals and Ordered Fluids, A. C. Griffin and J. F. Johnson, Eds., vol. 4, p. 203, Plenum Press, New York, NY, USA, 1984.
  11. Y. Yusuf, P. E. Cladis, H. R. Brand, H. Finkelmann, and S. Kai, “Hystereses of volume changes in liquid single crystal elastomers swollen with low molecular weight liquid crystal,” Chemical Physics Letters, vol. 389, no. 4–6, pp. 443–448, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Yusuf, Y. Ono, Y. Sumisaki et al., “Swelling dynamics of liquid crystal elastomers swollen with low molecular weight liquid crystals,” Physical Review E, vol. 69, no. 2, Article ID 021710, 9 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. U. Cho, Y. Yusuf, P. E. Cladis, H. R. Brand, H. Finkelmann, and S. Kai, “Thermo-mechanical properties of tri-functionally crosslinked liquid single crystal elastomers,” Chemical Physics Letters, vol. 418, no. 1–3, pp. 217–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yusuf, P. E. Cladis, H. R. Brand, H. Finkelmann, and S. Kai, “Birefringence measurement of liquid single crystal elastomer swollen with low molecular weight liquid crystal,” Chemical Physics Letters, vol. 382, no. 1-2, pp. 198–202, 2003. View at Publisher · View at Google Scholar
  15. Y. Yusuf, N. Minami, S. Yamaguchi et al., “Shape anisotropy and optical birefringence measurements of dry and swollen liquid single crystal elastomers,” Journal of the Physical Society of Japan, vol. 76, no. 7, Article ID 073602, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kawasaki, “Phase dynamics of irregular patterns and ultraslow modes in glass-forming systems,” Physica A, vol. 217, no. 1-2, pp. 124–139, 1995. View at Google Scholar · View at Scopus
  17. A. Caillé, Comptes Rendus de l'Académie des Sciences B, vol. 274, p. 891, 1972.
  18. http://mathworld.wolfram.com/LorentzianFunction.html.
  19. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Eds., Physical Properties of Liquid Crystals, Wiley-VCH, New York, NY, USA, 1999.
  20. M. A. Anisimov, P. E. Cladis, E. E. Gorodetskii et al., “Experimental test of a fluctuation-induced first-order phase transition: the nematicsmectic-A transition,” Physical Review A, vol. 41, no. 12, pp. 6749–6762, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. P. E. Cladis, in Physical Properties of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Eds., p. 289, Wiley-VCH, New York, NY, USA, 1999.
  22. S. Krause, Y. Yusuf, S. Hashimoto et al., (in preparation).
  23. P. G. de Gennes, M. Hubert, and R. Kant, “Artificial muscles based on nematic gels,” Macromolecular Symposia, vol. 113, no. 1, pp. 39–49, 1997. View at Publisher · View at Google Scholar
  24. M. Hubert, R. Kant, and P. G. de Gennes, “Dynamics and thermodynamics of artificial muscles based on nematic gels,” Journal de Physique I, vol. 7, no. 7, pp. 909–919, 1997. View at Publisher · View at Google Scholar
  25. M. Warner and S. Kutter, “Uniaxial and biaxial soft deformations of nematic elastomers,” Physical Review E, vol. 65, no. 5, Article ID 051707, 9 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus