Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2013 (2013), Article ID 783420, 8 pages
Review Article

Topological Excitations in Quantum Spin Systems

S. N. Bose National Centre For Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700098, India

Received 23 April 2013; Revised 13 September 2013; Accepted 27 September 2013

Academic Editor: Ashok Chatterjee

Copyright © 2013 Ranjan Chaudhury and Samir K. Paul. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The origin and significance of topological excitations in quantum spin models in low dimensions are presented in detail. Besides a general review, our own work in this area is described in great depth. Apart from theoretical analysis of the existence and properties of spin vortices and antivortices, the possible experimental consequences and signatures are also highlighted. In particular, the distinguishing features between the even and odd charged topological excitations are brought out through a detailed analysis of the topological term in the quantum action. Moreover, an interesting symmetry property is predicted between the excitations from a ferromagnetic model and an antiferromagnetic model. Through a novel approach of ours, a bridge is established between field theoretical formalism and the well-known statistical mechanical treatment of Berezinskii-Kosterlitz-Thouless (BKT) transition involving these topological excitations. Furthermore, a detailed phenomenological analysis of the experimentally observed static and dynamic magnetic properties of the layered magnetic materials, possessing XY anisotropy in the in-plane spin-spin couplings, is undertaken to test the theoretical predictions regarding the behaviour of these excitations. The importance and the crucial role of quantum spin fluctuations in these studies are also brought out very clearly by our analysis.