Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2014 (2014), Article ID 515698, 29 pages
Review Article

Composite Operator Method Analysis of the Underdoped Cuprates Puzzle

1Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, Italy
2Unità CNISM di Salerno, Università degli Studi di Salerno, 84084 Fisciano, Italy
3CNR-SPIN, UoS di Salerno, 84084 Fisciano, Italy

Received 3 June 2014; Accepted 30 September 2014; Published 10 November 2014

Academic Editor: Jörg Fink

Copyright © 2014 Adolfo Avella. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The microscopical analysis of the unconventional and puzzling physics of the underdoped cuprates, as carried out lately by means of the composite operator method (COM) applied to the 2D Hubbard model, is reviewed and systematized. The 2D Hubbard model has been adopted as it has been considered the minimal model capable of describing the most peculiar features of cuprates held responsible for their anomalous behavior. COM is designed to endorse, since its foundation, the systematic emergence in any SCS of new elementary excitations described by composite operators obeying noncanonical algebras. In this case (underdoped cuprates—2D Hubbard model), the residual interactions—beyond a 2-pole approximation—between the new elementary electronic excitations, dictated by the strong local Coulomb repulsion and well described by the two Hubbard composite operators, have been treated within the noncrossing approximation. Given this recipe and exploiting the few unknowns to enforce the Pauli principle content in the solution, it is possible to qualitatively describe some of the anomalous features of high-Tc cuprate superconductors such as large versus small Fermi surface dichotomy, Fermi surface deconstruction (appearance of Fermi arcs), nodal versus antinodal physics, pseudogap(s), and kinks in the electronic dispersion. The resulting scenario envisages a smooth crossover between an ordinary weakly interacting metal sustaining weak, short-range antiferromagnetic correlations in the overdoped regime to an unconventional poor metal characterized by very strong, long-but-finite-range antiferromagnetic correlations leading to momentum-selective non-Fermi liquid features as well as to the opening of a pseudogap and to the striking differences between the nodal and the antinodal dynamics in the underdoped regime.