Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2014, Article ID 609161, 6 pages
http://dx.doi.org/10.1155/2014/609161
Research Article

Resistivity, ESR, and Radiation Shielding Properties of the Volcanic Rock Materials

1Department of Physics, Faculty of Arts and Sciences, Yıldız Technical University, 34220 İstanbul, Turkey
2Natural Resources of Van Lake Basin Research and Application Center, Yüzüncü Yıl University, Zeve Campus, 65080 Van, Turkey
3Department of Mathematics, Faculty of Arts and Sciences, Istanbul Commerce University, Üsküdar, 34660 İstanbul, Turkey

Received 24 December 2013; Accepted 28 January 2014; Published 6 March 2014

Academic Editor: Jörg Fink

Copyright © 2014 Çiğdem Nuhoğlu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Pumices have been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. It will be important to study pumice types by using a different tool as EPR which is a new technique for related material to be used for industrial aims. Electron spin resonance (ESR) spectra of the pumice types were taken by EMX-type spectrometer. Also, the current-voltage (I-V) and surface resistivity probe stand of the thin films was studied using a four-point probe measurements. The relationship between radiation shielding properties of the pumice samples and their surface resistivity, chemical, and electrokinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between surface resistivity and density and SiO2, Fe2O3, CaO, MgO, and TiO2 content of pumice samples in this study. It is found that a correlation between determined -factor by EPR spectroscopy and radiation shielding is established for pumice samples.