Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2014, Article ID 957067, 7 pages
http://dx.doi.org/10.1155/2014/957067
Research Article

Numerical Analysis of Oxygen Adsorption on SnO2 Surface Using Slab Geometry

Institute of Electronics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

Received 31 May 2013; Accepted 21 October 2013; Published 16 January 2014

Academic Editor: Jörg Fink

Copyright © 2014 Weronika Izydorczyk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. M. Brokken-Zijp, O. L. J. van Asselen, W. E. Kleinjan, R. van de Belt, and G. de With, “Photocatalytic properties of tin oxide and antimony-doped tin oxide nanoparticles,” Journal of Nanotechnology, vol. 2011, Article ID 106254, 15 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Flitti, A. Far, B. Guo, and A. Bermak, “A robust and low-complexity gas recognition technique for on-chip tin-oxide gas sensor array,” Journal of Sensors, vol. 2008, Article ID 465209, 6 pages, 2008. View at Publisher · View at Google Scholar
  3. G. Lu, K. L. Huebner, L. E. Ocola, M. Gajdardziska-Josifovska, and J. Chen, “Gas sensors based on tin oxide nanoparticles synthesized from a mini-arc plasma source,” Journal of Nanomaterials, vol. 2006, Article ID 60828, 7 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. S. Rantala, V. Lantto, and T. T. Rantala, “Rate equation simulation of the height of Schottky barriers at the surface of oxidic semiconductors,” Sensors and Actuators B, vol. 13, no. 1–3, pp. 234–237, 1993. View at Google Scholar · View at Scopus
  5. W. Izydorczyk, B. Adamowicz, M. Miczek, and K. Waczynski, “Computer analysis of an influence of oxygen vacancies on the electronic properties of the SnO2 surface and near-surface region,” Physica Status Solidi (A), vol. 203, no. 9, pp. 2241–2246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Pan, H. Shen, and S. Mathur, “One-dimensional SnO2 nanostructures: synthesis and applications,” Journal of Nanotechnology, vol. 2012, Article ID 917320, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Habgood and N. Harrison, “An ab initio study of oxygen adsorption on tin dioxide,” Surface Science, vol. 602, no. 5, pp. 1072–1079, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. C. Chang, “Sensing mechanisms of thin-film tin oxide,” in Proceedings of the International Meeting on Chemical Sensors, pp. 78–83, Fukuoka, Japan, September 1983.
  9. S. R. Morrison, The Chemical Physics of Surfaces, Plenum Press, New York, NY, USA, 1997.
  10. V. V. Kissine, V. V. Sysoev, and S. A. Voroshilov, “Conductivity of SnO2 thin films in the presence of surface adsorbed species,” Sensors and Actuators B, vol. 79, no. 2-3, pp. 163–170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Lantto, P. Romppainen, and S. Leppävuori, “Response studies of some semiconductor gas sensors under different experimental conditions,” Sensors and Actuators, vol. 15, no. 4, pp. 347–357, 1988. View at Google Scholar · View at Scopus
  12. K. D. Schierbaum, H. D. Wiemhöfer, and W. Göpel, “Defect structure and sensing mechanism of SnO2 gas sensors: comparative electrical and spectroscopic studies,” Solid State Ionics, vol. 28–30, part 2, pp. 1631–1636, 1988. View at Google Scholar · View at Scopus
  13. J. Mizsei and V. Lantto, “Simultaneous response of work function and resistivity of some SnO2-based samples to H2 and H2S,” Sensors and Actuators B, vol. 4, no. 1-2, pp. 163–168, 1991. View at Google Scholar · View at Scopus
  14. S. Semancik and D. F. Cox, “Fundamental characterization of clean and gas-dosed tin oxide,” Sensors and Actuators, vol. 12, no. 2, pp. 101–106, 1987. View at Google Scholar · View at Scopus
  15. T. G. G. Maffes, G. T. Owen, M. W. Penny et al., “Nano-crystalline SnO2 gas sensor response to O2 and CH4 at elevated temperature investigated by XPS,” Surface Science, vol. 520, no. 1-2, pp. 29–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Slater, C. R. A. Catlow, D. E. Williams, and A. M. Stoneham, “Dissociation of O2 on the reduced SnO2 (110) surface,” Chemical Communications, no. 14, pp. 1235–1236, 2000. View at Google Scholar · View at Scopus
  17. J. Oviedo and M. J. Gillan, “First-principles study of the interaction of oxygen with the SnO2 (110) surface,” Surface Science, vol. 490, no. 3, pp. 221–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. T. S. Rantala and V. Lantto, “Some effects of mobile donors on electron trapping at semiconductor surfaces,” Surface Science, vol. 352–354, pp. 765–770, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. U. Pulkkinen, T. T. Rantala, T. S. Rantala, and V. Lantto, “Kinetic Monte Carlo simulation of oxygen exchange of SnO2 surface,” Journal of Molecular Catalysis A, vol. 166, no. 1, pp. 15–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Izydorczyk and B. Adamowicz, “Computer analysis of oxygen adsorption at SnO2 thin films,” Optica Applicata, vol. 37, no. 4, pp. 377–386, 2007. View at Google Scholar · View at Scopus
  21. S. R. Morrison, “Mechanism of semiconductor gas sensor operation,” Sensors and Actuators, vol. 11, no. 3, pp. 283–287, 1987. View at Google Scholar · View at Scopus
  22. N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, vol. 7, no. 3, pp. 143–167, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Murakami, K. Tanaka, K. Sasaki, and K. Ihokura, “Influence of sintering temperature on characteristics of tin oxide combustion monitor sensors,” in Proceedings of the International Meeting on Chemical Sensors, pp. 165–170, Fukuoka, Japan, September 1983.
  24. R. Summitt and N. F. Borrelli, “Temperature dependence of the ultraviolet absorption edges in SnO2,” Journal of Applied Physics, vol. 37, no. 5, p. 2200, 1966. View at Publisher · View at Google Scholar · View at Scopus
  25. C. G. Fonstad and R. H. Rediker, “Electrical properties of high-quality stannic oxide crystals,” Journal of Applied Physics, vol. 42, no. 7, pp. 2911–2918, 1971. View at Publisher · View at Google Scholar · View at Scopus
  26. S. C. Chang, “Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements,” Journal of Vacuum Science & Technology, vol. 17, no. 1, pp. 366–369, 1980. View at Publisher · View at Google Scholar · View at Scopus
  27. S. I. Rembeza, E. S. Rembeza, T. V. Svistova, and O. I. Borsiakova, “Electrical resistivity and gas response mechanisms of nanocrystalline SnO2 films in a wide temperature range,” Physica Status Solidi (A), vol. 179, no. 1, pp. 147–152, 2000. View at Google Scholar
  28. R. Sanjines, F. Lévy, V. Demarne, and A. Grisel, “Some aspects of the interaction of oxygen with polycrystalline SnOx thin films,” Sensors and Actuators B, vol. 1, no. 1–6, pp. 176–182, 1990. View at Google Scholar · View at Scopus
  29. F. Cosandey, G. Skandan, and A. Singhal, “Materials and processing issues in nanostructured semiconductor gas sensors,” JOM-e, vol. 52, no. 10, pp. 1–6, 2000. View at Google Scholar
  30. B. Adamowicz, W. Izydorczyk, J. Izydorczyk, A. Klimasek, W. Jakubik, and J. Zywicki, “Response to oxygen and chemical properties of SnO2 thin-film gas sensors,” Vacuum, vol. 82, no. 10, pp. 966–970, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Th. Becker, S. Ahlers, Ch. B.-V. Braunmuhl, G. Müller, and O. Kiesewetter, “Gas sensing properties of thin- and thick-film tin-oxide materials,” Sensors and Actuators B, vol. 77, no. 1-2, pp. 55–61, 2001. View at Google Scholar
  32. V. Lantto and V. Golovanov, “A comparison of conductance behaviour between SnO2 and CdS gas-sensitive films,” Sensors and Actuators B, vol. 25, no. 1–3, pp. 614–618, 1995. View at Google Scholar · View at Scopus
  33. L. Yu. Kupriyanow, Semiconductor Sensors in Physico-Chemical Studies, Elsevier, Amsterdam, The Netherlands, 1996.