Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2017 (2017), Article ID 1751768, 7 pages
https://doi.org/10.1155/2017/1751768
Research Article

Surfactant Assisted Stabilization of Carbon Nanotubes Synthesized by a Spray Pyrolysis Method

1Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U., Ciudad Universitaria, 58000 Morelia, MICH, Mexico
2Tecnológico de Estudios Superiores de Coacalco, Av. 16 de Septiembre No. 54, Col. Cabecera Municipal, 55700 Coacalco de Berriozábal, MEX, Mexico

Correspondence should be addressed to D. Mendoza-Cachú

Received 27 March 2017; Accepted 18 May 2017; Published 2 July 2017

Academic Editor: Mohindar S. Seehra

Copyright © 2017 D. Mendoza-Cachú et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. F. Harris, “Carbon nanotube science: Synthesis, properties and applications,” Carbon Nanotube Science: Synthesis, Properties and Applications, pp. 1–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Ruland, A. K. Schaper, H. Hou, and A. Greiner, “Multi-wall carbon nanotubes with uniform chirality: Evidence for scroll structures,” Carbon, vol. 41, no. 3, pp. 423–427, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Y.-L. Zhang, P.-X. Hou, C. Liu, and H.-M. Cheng, “De-bundling of single-wall carbon nanotubes induced by an electric field during arc discharge synthesis,” Carbon, vol. 74, pp. 370–373, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. K. S. Kim, C. T. Kingston, D. Ruth, M. Barnes, and B. Simard, “Synthesis of high quality single-walled carbon nanotubes with purity enhancement and diameter control by liquid precursor Ar-H2 plasma spraying,” Chemical Engineering Journal, vol. 250, pp. 331–341, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. E. V. Lobiak, E. V. Shlyakhova, L. G. Bulusheva, P. E. Plyusnin, Y. V. Shubin, and A. V. Okotrub, “Ni-Mo and Co-Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes,” Journal of Alloys and Compounds, vol. 621, pp. 351–356, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, vol. 287, no. 5453, pp. 637–640, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature, vol. 381, no. 6584, pp. 678–680, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Tans, M. H. Devoret, H. Dai et al., “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386, no. 3, pp. 474–477, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters, vol. 87, Article ID 215502, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Sadeghian, “Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane,” New Carbon Materials, vol. 24, no. 1, pp. 33–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, and M. Sharon, “Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil,” Chemical Physics Letters, vol. 414, no. 1-3, pp. 6–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. L. F. Su, J. N. Wang, F. Yu, Z. M. Sheng, H. Chang, and C. Pak, “Continuous production of single-wall carbon nanotubes by spray pyrolysis of alcohol with dissolved ferrocene,” Chemical Physics Letters, vol. 420, no. 4–6, pp. 421–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. R. C. Vivekchand, L. M. Cele, F. L. Deepak, A. R. Raju, and A. Govindaraj, “Carbon nanotubes by nebulized spray pyrolysis,” Chemical Physics Letters, vol. 386, no. 4-6, pp. 313–318, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y.-Q. Liu, X.-H. Chen, Z. Yang, Y.-X. Pu, and B. Yi, “Synthesis of aligned carbon nanotube with straight-chained alkanes by nebulization method,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 20, no. 6, pp. 1012–1016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Cele and N. J. Coville, “The negative effects of alcohols on carbon nanotube synthesis in a nebulised spray pyrolysis process,” Carbon, vol. 47, no. 7, pp. 1824–1832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Huang, B. Wu, J. Chen et al., “Synthesis of single-walled carbon nanotubes by an arc-discharge method using selenium as a promoter,” Carbon, vol. 49, no. 14, pp. 4792–4800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Qiu, Z. Shi, L. Guan et al., “High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter,” Carbon, vol. 44, no. 3, pp. 516–521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-W. Choi, J. Kim, J.-H. Lee, and Y. T. Byun, “Remarkable improvement of CO-sensing performances in single-walled carbon nanotubes due to modification of the conducting channel by functionalization of Au nanoparticles,” Sensors and Actuators, B: Chemical, vol. 232, pp. 625–632, 2016. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Eguílaz, A. Gutiérrez, F. Gutierrez et al., “Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols,” Analytica Chimica Acta, vol. 909, pp. 51–59, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Thirumalraj, S. Palanisamy, S.-M. Chen, and D.-H. Zhao, “Amperometric detection of nitrite in water samples by use of electrodes consisting of palladium-nanoparticle-functionalized multi-walled carbon nanotubes,” Journal of Colloid and Interface Science, vol. 478, pp. 413–420, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Taghavi, A. H. Nia, K. Abnous, and M. Ramezani, “Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells,” International Journal of Pharmaceutics, vol. 516, pp. 301–312, 2016. View at Google Scholar
  23. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, vol. 76, no. 20, pp. 2868–2870, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, and D. H. Wu, “Processing and properties of carbon nanotubes-nano-SiC ceramic,” Journal of Materials Science, vol. 33, no. 21, pp. 5243–5246, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. S.-Y. Liu, F.-P. Gao, Q.-Y. Zhang, X. Zhu, and W.-Z. Li, “Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 20, no. 7, pp. 1222–1227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Mendoza-Cachú, C. Mercado-Zúñiga, and G. Rosas, “Influence of surfactant nature on the stability of carbon nanotubes synthesized by a spray pyrolysis method,” in Proceedings of the 25° International Materials Research Congress, Cancún, México, August 2017.
  27. R. Andrews, D. Jacques, A. M. Rao et al., “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chemical Physics Letters, vol. 303, no. 5-6, pp. 467–474, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Lin, H. Peng, and G. Ding, “Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant,” Applied Thermal Engineering, vol. 91, pp. 163–171, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Rosen and J. T. Kunjappu, Surfactants and interfacial phenomena, John Wiley & Sons, 4th edition, 2012.
  30. I. Madni, C.-Y. Hwang, S.-D. Park, Y.-H. Choa, and H.-T. Kim, “Mixed surfactant system for stable suspension of multiwalled carbon nanotubes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 358, no. 1-3, pp. 101–107, 2010. View at Publisher · View at Google Scholar · View at Scopus