Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2017 (2017), Article ID 2414798, 6 pages
https://doi.org/10.1155/2017/2414798
Research Article

Characteristic Evaluation of Organic Light-Emitting Diodes Prepared with Stamp Printing Technique

Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Correspondence should be addressed to Kitsakorn Locharoenrat

Received 16 March 2017; Accepted 11 April 2017; Published 10 May 2017

Academic Editor: Kiyokazu Yasuda

Copyright © 2017 Apisit Chittawanij and Kitsakorn Locharoenrat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Wang, J. Ding, M. Dongge et al., “Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: fabrication and emission-mechanism analysis,” Advanced Functional Materials, vol. 19, no. 1, pp. 84–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature, vol. 492, no. 7428, pp. 234–238, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Sivaramakrishnan, M. Zhou, A. C. Kumar et al., “Solution-processed conjugated polymer organic p-i-n light-emitting diodes with high built-in potential by solution- and solid-state doping,” Applied Physics Letters, vol. 95, Article ID 213303, 2006. View at Google Scholar
  4. Z.-L. Zhou, X. Sheng, K. Nauka et al., “Multilayer structured polymer light emitting diodes with cross-linked polymer matrices,” Applied Physics Letters, vol. 96, no. 1, Article ID 013504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Meerholz, “Device physics: enlightening solutions,” Nature, vol. 437, no. 7057, pp. 327–328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. An, J. Zou, H. Wu, J. Peng, W. Yang, and Y. Cao, “White emission polymer light-emitting devices with efficient electron injection from alcohol/water-soluble polymer/Al bilayer cathode,” Organic Electronics: Physics, Materials, Applications, vol. 10, no. 2, pp. 299–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Rehmann, D. Hertel, K. Meerholz, H. Becker, and S. Heun, “Highly efficient solution-processed phosphorescent multilayer organic light-emitting diodes based on small-molecule hosts,” Applied Physics Letters, vol. 91, no. 10, Article ID 103507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Sun, D. W. Chang, I. Dai, J. Grote, and R. Naik, “Multilayer white polymer light-emitting diodes with deoxyribonucleic acid-cetyltrimetylammonium complex as a hole-transporting/electron-blocking layer,” Applied Physics Letters, vol. 92, Article ID 251108, 3 pages, 2008. View at Google Scholar
  9. K.-H. Yim, Z. Zheng, Z. Liang, R. H. Friend, W. T. S. Huck, and J.-S. Kim, “Efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique,” Advanced Functional Materials, vol. 18, no. 7, pp. 1012–1019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Choi, K. H. Kim, S. J. Choi, and H. H. Lee, “Whole device printing for full color displays with organic light-emitting diodes,” Nanotechnology, vol. 17, pp. 2246–2249, 2006. View at Google Scholar
  11. T. A. M. Ferenczi, J. Nelson, C. Belton et al., “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” Journal of Physics Condensed Matter, vol. 20, no. 47, Article ID 475203, 8 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Chen, P. Degenaar, and D. D. C. Bradley, “Polymer transfer printing: application to layer coating, pattern definition, and diode dark current blocking,” Advanced Materials, vol. 20, no. 9, pp. 1679–1683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S.-Z. Chen, S.-H. Peng, T.-Y. Ting et al., “Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers,” Applied Physics Letters, vol. 101, no. 15, Article ID 153304, 4 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. T. H. Park, Y. W. Park, J. H. Choi et al., “Contact printing of the emitting layer for high performance multilayered phosphorescent organic light-emitting diodes,” Organic Electronics: Physics, Materials, Applications, vol. 12, no. 6, pp. 1063–1067, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Y. Hui, A. Jagota, Y. Y. Lin, and E. J. Kramer, “Constraints on microcontact printing imposed by stamp deformation,” Langmuir, vol. 18, no. 4, pp. 1394–1407, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. K. Hwang, S. Cho, J. M. Dang et al., “Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding,” Nature Nanotechnology, vol. 5, no. 10, pp. 742–748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. X.-M. Li, M. Péter, J. Huskens, and D. N. Reinhoudt, “Catalytic microcontact printing without ink,” Nano Letters, vol. 3, no. 10, pp. 1449–1453, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, vol. 8, no. 10, pp. 1063–1075, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Olander, A. Wirsén, and A.-C. Albertsson, “Oxygen microwave plasma treatment of silicone elastomer: kinetic behavior and surface composition,” Journal of Applied Polymer Science, vol. 91, no. 6, pp. 4098–4104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Khan, L. Lorenzelli, and R. S. Dahiya, “Technologies for printing sensors and electronics over large flexible substrates: a review,” IEEE Sensors Journal, vol. 15, no. 6, pp. 3164–3185, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kaufmann and B. J. Ravoo, “Stamps, inks and substrates: Polymers in microcontact printing,” Polymer Chemistry, vol. 1, no. 4, pp. 371–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. Bradley, “Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Advanced Functional Materials, vol. 15, no. 2, pp. 290–296, 2005. View at Publisher · View at Google Scholar
  23. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Applied Physics Letters, vol. 75, no. 12, pp. 1679–1681, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. S.-J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Advanced Materials, vol. 20, no. 21, pp. 4189–4194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Cai, S.-J. Su, T. Chiba et al., “High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials,” Organic Electronics: Physics, Materials, Applications, vol. 12, no. 5, pp. 843–850, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. H. Kim, J. Jang, and J. Y. Lee, “Relationship between host energy levels and device performances of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure,” Applied Physics Letters, vol. 91, no. 8, Article ID 083511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. E. Kondakova, T. D. Pawlik, R. H. Young et al., “High-efficiency, low-voltage phosphorescent organic light-emitting diode devices with mixed host,” Journal of Applied Physics, vol. 104, no. 9, Article ID 094501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Competing fracture in kinetically controlled transfer printing,” Langmuir, vol. 23, no. 25, pp. 12555–12560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Allen, V. C. Tung, L. Gomez et al., “Soft transfer printing of chemically converted graphene,” Advanced Materials, vol. 21, no. 20, pp. 2098–2102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Neghabi, M. Zadsar, and S. M. B. Ghorashi, “Investigation of structural and optoelectronic properties of annealed nickel phthalocyanine thin films,” Materials Science in Semiconductor Processing, vol. 17, pp. 13–20, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. S. R. Ovshinsky and D. Adler, “Local structure, bonding, and electronic properties of covalent amorphous semiconductors,” Contemporary Physics, vol. 19, no. 2, pp. 109–126, 1978. View at Publisher · View at Google Scholar · View at Scopus
  32. C. W. Joo, S. O. Jeon, K. S. Yook, and J. Y. Lee, “Improved device performances in polymer light-emitting diodes using a stamp transfer printing process,” Organic Electronics: Physics, Materials, Applications, vol. 10, no. 2, pp. 372–375, 2009. View at Publisher · View at Google Scholar · View at Scopus