Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2017, Article ID 9321439, 37 pages
https://doi.org/10.1155/2017/9321439
Research Article

Unprecedented Integral-Free Debye Temperature Formulas: Sample Applications to Heat Capacities of ZnSe and ZnTe

Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany

Correspondence should be addressed to R. Pässler; ed.ztinmehc-ut.kisyhp@relssap

Received 19 March 2017; Accepted 30 April 2017; Published 18 September 2017

Academic Editor: Oleg Derzhko

Copyright © 2017 R. Pässler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Debye, “Zur Theorie der spezifischen Wärmen,” Annalen der Physik, vol. 344, no. 14, pp. 789–839, 1912. View at Publisher · View at Google Scholar
  2. E. Schrödinger, “'Spezifische Wärme', in Handbuch der Physik,” in Thermische Eigenschaften der Stoffe, C. Drucker, E. Grüneisen, Ph. Kohnstamm et al., Eds., pp. 275–320, Springer-Verlag, Berlin, Heidelberg, 1926. View at Publisher · View at Google Scholar
  3. M. Blackman, “The Specific Heat of Solids,” in Encyclopedia of Physics, vol. 3 of part 1: Crystal Physics 1, pp. 325–382, Springer Berlin Heidelberg, Berlin, Heidelberg, 1955. View at Publisher · View at Google Scholar
  4. P. H. Keesom and N. Pearlman, “Low Temperature Heat Capacity of Solids,” in Encyclopedia of Physics, S. Flügge, Ed., vol. 14 of Low temperature physics I, pp. 282–337, Springer-Verlag, Berlin-Göttingen-Heidelberg, Berlin, Heidelberg, 1956. View at Publisher · View at Google Scholar
  5. A. J. Dekker, Solid State Physics, Macmillan Education UK, London, 1981. View at Publisher · View at Google Scholar
  6. E. S. Gopal, Specific Heats at Low Temperatures, Springer US, Boston, MA, 1966. View at Publisher · View at Google Scholar
  7. S. Kobe, Crystal Research and Technology, Group III, vols. 17a/b, 22a/b, and 41a/b, Springer-Verlag, Berlin, Germany, 1982. View at Publisher · View at Google Scholar
  8. T. H. Barron and G. K. White, Heat Capacity and Thermal Expansion at Low Temperatures, Springer US, Boston, MA, 1999. View at Publisher · View at Google Scholar
  9. S. Adachi, Handbook on Physical Properties of Semiconductors, vol. vols. 1, 2, and 3, Kluwer Academic Publishers, Boston, Dordrecht, New York, London, 2004.
  10. S. Adachi, Properties of Group-IV, III-V, and II-VI Semiconductors, Wiley Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, England, UK, 2005.
  11. U. Piesbergen, “Heat Capacity and Debye Temperatures,” in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Eds., vol. 2 of Physics of III-V Compounds, Chapter 3, pp. 49–60, Academic Press New York and London, 1966. View at Google Scholar
  12. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” Journal of Applied Physics, vol. 53, no. 10, pp. R123–R181, 1982. View at Publisher · View at Google Scholar
  13. R. Pässler, “Limiting Debye temperature behavior following from cryogenic heat capacity data for group-IV, III-V, and II-VI materials,” Physica Status Solidi (B) Basic Research, vol. 247, no. 1, pp. 77–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Pässler, “Non-Debye behaviours of heat capacities of cubic IIVI materials,” Journal of Physics and Chemistry of Solids, vol. 72, no. 11, pp. 1296–1311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Pässler, “Non-Debye heat capacity formula refined and applied to GaP, GaAs, GaSb, InP, InAs, and InSb,” AIP Advances, vol. 3, no. 8, Article ID 082108, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. T. H. Barron, W. T. Berg, and J. A. Morrison, “The thermal properties of alkali halide crystals. II. Analysis of experimental results,” in Proceedings of the Royal Society, vol. 242, pp. 478–492, London, UK, 1957. View at Publisher · View at Google Scholar
  17. T. H. Barron, W. T. Berg, and J. A. Morrison, “On the heat capacity of crystalline magnesium oxide,” in Proceedings of the Royal Society, vol. 250, pp. 70–83, London, UK, 1959. View at Publisher · View at Google Scholar
  18. P. Flubacher, A. J. Leadbetter, and J. A. Morrison, “The Heat Capacity of Pure Silicon and Germanium and Properties of their Vibrational Frequency Spectra,” The Philosophical Magazine, vol. 4, no. 39, pp. 273–294, 1959. View at Publisher · View at Google Scholar
  19. G. Dolling and R. A. Cowley, “The thermodynamic and optical properties of germanium, silicon, diamond and gallium arsenide,” Proceedings of the Physical Society, vol. 88, no. 2, article no. 318, pp. 463–494, 1966. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Schnelle and E. Gmelin, “Heat capacity of germanium crystals with various isotopic composition,” Journal of Physics Condensed Matter, vol. 13, no. 27, pp. 6087–6094, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Pässler, “Dispersion-related theory for heat capacities of semiconductors,” Physica Status Solidi (B) Basic Research, vol. 244, no. 12, pp. 4605–4623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Piesbergen, “Die durchschnittlichen Atomwärmen der AIII BV-Halbleiter ALSb, GaAs, GaSb, InP, InAs, InSb und die Atomwärme des Elements Germanium zwischen 12 und 273 °K,” Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, vol. 18, no. 2, pp. 141–147, 1963. View at Publisher · View at Google Scholar · View at Scopus
  23. T. C. Cetas, C. R. Tilford, and C. A. Swenson, “Specific heats of Cu, GaAs, GaSb, InAs, and InSb from 1 to 30°K,” Physical Review, vol. 174, no. 3, pp. 835–844, 1968. View at Publisher · View at Google Scholar · View at Scopus
  24. A. F. Demidenko, V. I. Koshchenko, A. S. Pashinkin, and V. E. Yachmenev, “Temperature dependences of the specific heat and thermodynamic properties of gallium phosphide,” Inorganic Materials, vol. 17, pp. 677–680, 1981. View at Google Scholar
  25. N. N. Sirota, V. V. Novikov, and A. M. Antyukhov, “Heat Capacity and Thermodynamic Functions of (GaAs)x(InAs)1-x Solid Solutions in the 5-300 K Temperature Range,” Doklady Akademii Nauk SSSR, vol. 263, no. 1, pp. 96–100, 1982. View at Google Scholar
  26. N. N. Sirota, A. M. Antyukhov, V. V. Novikov, and A. A. Sidorov, “Temperature Dependence of the Heat Capacity and Characteristic Thermodynamic Functions of the Solid Solutions of (GaAs)x(InP)1-x in the Temperature Range of 5 to 300 K,” Doklady Akademii Nauk SSSR, vol. 266, no. 3, pp. 105–108, 1982. View at Google Scholar
  27. N. N. Sirota, A. M. Antyukhov, V. V. Novikov, and V. A. Fyodorov, “Thermodynamic functions of (InP)x(InAs)1‐x from 5 to 300 K,” Crystal Research and Technology, vol. 17, no. 3, pp. 279–287, 1982. View at Publisher · View at Google Scholar · View at Scopus
  28. J. C. Nipko and C.-K. Loong, “Phonon excitations and related thermal properties of aluminum nitride,” Physical Review B—Condensed Matter and Materials Physics, vol. 57, no. 17, pp. 10550–10554, 1998. View at Publisher · View at Google Scholar
  29. J. C. Nipko, C.-K. Loong, C. M. Balkas, and R. F. Davis, “Phonon density of states of bulk gallium nitride,” Applied Physics Letters, vol. 73, no. 1, pp. 34–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. V. V. Novikov, “The lattice heat capacity of binary compounds in the approximation of three-dimensional debye sublattices,” Russian Journal of Physical Chemistry A, vol. 80, no. 9, pp. 1456–1460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. F. Demidenko and A. K. Maltsev, “Heat capacity of Zinc Telluride in the interval 56-300oK,” Neorganicheskie Materialy, vol. 5, pp. 158–160, 1969. View at Google Scholar
  32. N. Vagelatos, D. Wehe, and J. S. King, “Phonon dispersion and phonon densities of states for ZnS and ZnTe,” The Journal of Chemical Physics, vol. 60, no. 9, pp. 3613–3618, 1974. View at Publisher · View at Google Scholar
  33. J. C. Irwin and J. Lacombe, “Specific heats of ZnTe, ZnSe, and GaP,” Journal of Applied Physics, vol. 45, no. 2, pp. 567–573, 1974. View at Publisher · View at Google Scholar · View at Scopus
  34. J. A. Birch, “Heat capacities of ZnS, ZnSe and CdTe below 25K,” Journal of Physics C: Solid State Physics, vol. 8, no. 13, article no. 013, pp. 2043–2047, 1975. View at Publisher · View at Google Scholar · View at Scopus
  35. J. G. Collins, G. K. White, J. A. Birch, and T. F. Smith, “Thermal expansion of ZnTe and HgTe and heat capacity of HgTe at low temperatures,” Journal of Physics C: Solid State Physics, vol. 13, no. 9, article no. 011, pp. 1649–1656, 1980. View at Publisher · View at Google Scholar · View at Scopus
  36. D. N. Talwar, M. Vandevyver, K. Kunc, and M. Zigone, “Lattice dynamics of zinc chalcogenides under compression: Phonon dispersion, mode Grneisen, and thermal expansion,” Physical Review B, vol. 24, no. 2, pp. 741–753, 1981. View at Publisher · View at Google Scholar · View at Scopus
  37. H. ‐M. Kagaya and T. Soma, “Temperature dependence of specific heat and Debye temperature of tetrahedral compounds,” Physica Status Solidi B, vol. 134, no. 2, pp. K101–K104, 1986. View at Publisher · View at Google Scholar · View at Scopus
  38. K. S. Gavrichev, V. N. Guskov, J. H. Greenberg, T. Feltgen, M. Fiederle, and K. W. Benz, “Low-temperature heat capacity of ZnTe,” Journal of Chemical Thermodynamics, vol. 34, no. 12, pp. 2041–2047, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. W. T. Berg and J. B. Morrison, “The thermal properties of alkali halide crystals. I. The heat capacities of potassium chloride, potassium bromide, potassium iodide and sodium iodide between 2.8 and 270oK,” in Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 242, 1231, pp. 467–477, 1957. View at Publisher · View at Google Scholar
  40. M. P. Tosi and F. G. Fumi, “Temperature dependence of the Debye temperatures for the thermodynamic functions of alkali halide crystals,” Physical Review, vol. 131, no. 4, pp. 1458–1465, 1963. View at Publisher · View at Google Scholar · View at Scopus
  41. I. I. Guseinov and B. A. Mamedov, “Calculation of integer and noninteger n-dimensional debye functions using binomial coefficients and incomplete gamma functions,” International Journal of Thermophysics, vol. 28, no. 4, pp. 1420–1426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. E. Dubinov and A. A. Dubinova, “Exact integral-free expressions for the integral Debye functions,” Technical Physics Letters, vol. 34, no. 12, pp. 999–1001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Sönmezoğlu, “Investigation of the entropy and specific heat capacity of GaN using incomplete gamma functions,” International Journal of Modern Physics B, vol. 22, no. 30, pp. 5349–5355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. B. A. Mamedov, E. Eser, H. Koç, and I. M. Askerov, “Accurate evaluation of the specific heat capacity of solids and its application to mgo and zno crystals,” International Journal of Thermophysics, vol. 30, no. 3, pp. 1048–1054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Yu, H. L. Han, M. J. Wan, T. Cai, and T. Gao, “Structural, vibrational and thermodynamics propertiesof Zn-based semiconductors,” Solid State Sciences, vol. 11, no. 8, pp. 1343–1349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. R. K. Kremer, M. Cardona, R. Lauck, G. Siegle, and A. H. Romero, “Vibrational and thermal properties of ZnX (X=Se, Te): Density functional theory (LDA and GGA) versus experiment,” Physical Review B - Condensed Matter and Materials Physics, vol. 85, no. 3, Article ID 035208, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Beattie, “Six Place Tables of the Debye Energy and Specific Heat Functions,” Journal of Mathematics and Physics, vol. 6, no. 1—4, pp. 1–38, 1926. View at Publisher · View at Google Scholar
  48. “Landoldt-börnstein: physikalisch-chemische tabellen,” in Die Einsteinschen und Debyeschen Funktionen, W. Roth and K. Scheel, Eds., vol. 1, 1, pp. 702–707, Springer-Verlag, Berlin, Germany, 5th edition, 1927.
  49. P. Harteck, “Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik,” in Debye-Funktionen, vol. 67, pp. 767-768, 23 edition, 1955. View at Publisher · View at Google Scholar
  50. R. Pässler, “Representative hybrid model used for analyses of heat capacities of group-IV, III-V, and II-VI materials,” Physica Status Solidi (B) Basic Research, vol. 248, no. 4, pp. 904–920, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. A. A. Maradudin and R. F. Wallis, “Lattice-dynamical calculation of the surface specific heat of a crystal at low temperatures,” Physical Review, vol. 148, no. 2, pp. 945–961, 1966. View at Publisher · View at Google Scholar · View at Scopus
  52. A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova, “Theory of Lattice Dynamics in the Harmonic Approximation,” in Solid State Physics, H. E. Ehrenreich et al., Ed., 3, p. viii+319, Academic Press, New York-London, New York, NY, USA, 2nd edition, 1971. View at Google Scholar · View at MathSciNet
  53. C. Lee and X. Gonze, “Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite,” Physical Review B, vol. 51, no. 13, pp. 8610–8613, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Pässler, “Exponential series representation for heat capacities of semiconductors and wide-bandgap materials,” Physica Status Solidi (B) Basic Research, vol. 245, no. 6, pp. 1133–1146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. W. Xue, Y. Yu, Y. Zhao, H. Han, and T. Gao, “First principles calculations of the electronic, dynamical, and thermodynamic properties of the rocksalt ScX (X = N, P, As, Sb),” Computational Materials Science, vol. 45, no. 4, pp. 1025–1030, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Pässler, “Basic moments of phonon density of states spectra and characteristic phonon temperatures of group IV, III-V, and II-VI materials,” Journal of Applied Physics, vol. 101, no. 9, Article ID 093513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Neumann, G. Kühn, and W. Möller, “Heat Capacity and Lattice Anharmonicity in Cu‐III‐VI2 Chalcopyrite Compounds,” physica status solidi (b), vol. 144, no. 2, pp. 565–573, 1987. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Nernst and F. A. Lindemann, “Spezifische Wärme und Quantentheorie,” Zeitschrift für Elektrochemie, vol. 17, pp. 817–827, 1911. View at Google Scholar
  59. R. Pässler, “Characteristic non-Debye heat capacity formula applied to GaN and ZnO,” Journal of Applied Physics, vol. 110, no. 4, Article ID 043530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Sommerfeld, “Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. I. Teil: Allgemeines, Strömungs- und Austrittsvorgänge,” Zeitschrift für Physik, vol. 47, no. 1-2, pp. 1–32, 1928. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Pearlman and P. H. Keesom, “The atomic heat of silicon below 100°K,” Physical Review, vol. 88, no. 2, pp. 398–405, 1952. View at Publisher · View at Google Scholar · View at Scopus
  62. C. A. Bryant and P. H. Keesom, “Low-temperature specific heat of germanium,” Physical Review, vol. 124, no. 3, pp. 698–700, 1961. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Wagner-Reetz, D. Kasinathan, W. Schnelle et al., “Phonon-drag effect in FeGa3,” Physical Review B - Condensed Matter and Materials Physics, vol. 90, no. 19, Article ID 195206, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. T. H. K. Barron and J. A. Morrison, “The Thermal Properties of Alkali Halide Crystals. III. The Inversion of the Heat Capacity,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 256, no. 1286, pp. 427–439, 1960. View at Publisher · View at Google Scholar
  65. J. C. Holste, “Specific heats of GaSb, GaAs, InSb, InAs, Bi, Cd, Sn, and Zn below 30 K,” Physical Review B, vol. 6, no. 6, pp. 2495–2497, 1972. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Hennion, F. Moussa, G. Pepy, and K. Kunc, “Normal modes of vibrations in ZnSe,” Physics Letters A, vol. 36, no. 5, pp. 376–378, 1971. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Bilz and W. Kress, Phonon Dispersion Relations in Insulators, vol. 10 of Springer Series in Solid-State Sciences, Springer, Heidelberg, Berlin, Germany, 1979. View at Publisher · View at Google Scholar
  68. A. Einstein, “Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme,” Annalen der Physik, vol. 327, no. 1, pp. 180–190, 1906. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Thirring, “Zur Theorie der Raumgitterschwingungen und der spezifischen WΣrme fester K÷rper,” Physikalische Zeitschrift, vol. 14, pp. 876–873, 1913. View at Google Scholar
  70. E. Gmelin, “Thermal Properties of Alkaline Earth Oxides: II. Analysis of Experimental Results for MgO, CaO, SrO, and BaO,” Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, vol. 25, no. 6, pp. 887–893, 1970. View at Publisher · View at Google Scholar · View at Scopus
  71. A. P. Rusakov, Y. K. Vekilov, and A. E. Kadyshevich, “Specific Heats of CdTe and HgTe and their Vibrational Frequency Spectra,” Fizika Tverdogo Tela, vol. 12, no. 11, pp. 3238–3243, 1970. View at Google Scholar
  72. R. Pässler, “Moments of phonon density of states spectra and characteristic phonon temperatures of wide band gap materials,” Physica Status Solidi (B) Basic Research, vol. 243, no. 12, pp. 2719–2727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Wagini, “Systematik charakteristischer Temperaturen von Halbleitern mit Zinkblende-Gitter,” Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, vol. 22, no. 7, pp. 1135-1136, 1967. View at Publisher · View at Google Scholar · View at Scopus
  74. B. H. Lee, “Elastic constants of ZnTe and ZnSe between 77°-300°K,” Journal of Applied Physics, vol. 41, no. 7, pp. 2984–2987, 1970. View at Publisher · View at Google Scholar · View at Scopus
  75. J. K. D. Verma and M. D. Aggarwal, “An averaging method for the shear modulus and Debye temperatures of cubic solids,” Journal of Applied Physics, vol. 46, no. 7, pp. 2841–2844, 1975. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Singh and Y. P. Varshni, “Debye temperatures for hexagonal crystals,” Physical Review B, vol. 24, no. 8, pp. 4340–4347, 1981. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Siethoff and K. Ahlborn, “The Dependence of the Debye Temperature on the Elastic Constants,” Physica Status Solidi (B), vol. 190, no. 1, pp. 179–191, 1995. View at Publisher · View at Google Scholar
  78. A. S. Pashinkin and A. S. Malkova, “Heat capacity of Zinc Selenide,” Russian Journal of Physical Chemistry A, vol. 77, no. 12, pp. 2068-2069, 2003. View at Google Scholar · View at Scopus
  79. N. N. Sirota, Z. K. Petrova, and T. D. Sokolovsky, “Heat Capacity of Zinc Selenide over the Temperature Range 4.2 to 300 K,” Doklady Akademii Nauk Belorusi, vol. 24, no. 3, pp. 214–217, 1980. View at Google Scholar
  80. G. G. Gadzhiev, Sh. M. Ismailow, and A. I. Dadashev, “Thermal Properties of AIIBVI-Based Ceramics,” High Temperature, vol. 31, no. 3, pp. 350–354, 1993. View at Google Scholar
  81. I. Hurtado and D. Neuschütz, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group IV, (Thermodynamic Properties of Inorganic Materials), vol. 19 of Subvolume A, Parts 1-4, Springer-Verlag, Berlin, Heidelberg, 1999.
  82. K. S. Gavrichev, G. A. Sharpataya, V. N. Guskov et al., “Thermodynamic properties of ZnTe in the temperature range 15-925 K,” Physica Status Solidi (B) Basic Research, vol. 229, no. 1, pp. 133–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. T. H. K. Barron and J. A. Morrison, “On the specific heat of solids at low temperatures,” Canadian Journal of Physics, vol. 35, no. 7, pp. 799–810, 1957. View at Publisher · View at Google Scholar
  84. M. Cardona, R. K. Kremer, R. Lauck, G. Siegle, J. Serrano, and A. H. Romero, “Heat capacity of PbS: Isotope effects,” Physical Review B - Condensed Matter and Materials Physics, vol. 76, no. 7, Article ID 075211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Kelemen, E. Cruceanu, and D. Niculescu, “Untersuchung einiger thermischer Eigenschaften der Verbindungen HgSe, HgTe und ZnTe,” physica status solidi (b), vol. 11, no. 2, pp. 865–872, 1965. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Guo, G. Hu, W.-J. Feng, and S.-T. Zhang, “Structural, elastic, electronic and optical properties of zinc-blende MTe (M=Zn/Mg),” Wuli Huaxue Xuebao/ Acta Physico—Chimica Sinica, vol. 29, no. 5, pp. 929–936, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. A. K. Kushwaha, “Phonon spectrum and thermal properties of semiconducting compounds ZnS and ZnSe,” Physica B: Condensed Matter, vol. 405, no. 6, pp. 1638–1642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. U. C. Boehnke, G. Kühn, F. I. Frolova, I. E. Paukov, and H. Neumann, “Heat capacity of LiInTe2,” Journal of Thermal Analysis, vol. 33, no. 1, pp. 205–209, 1988. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Kunc, M. Balkanski, and M. A. Nusimovici, “Lattice dynamics of several aNB8-N compounds having the zincblende structure. II. Numerical Calculations,” Physica Status Solidi B, vol. 72, no. 1, pp. 249–254, 1975. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Abramowitz and I. A. Stegun, “Pocketbook of mathematical functions , Verlag Harri Deutsch,” Thun-Frankfurt/Main, 1984. View at Google Scholar
  91. H. J. Schell, “Unendliche Reihen,” in Mathematik für Ingenieure, Naturwissenschaftler, Ökonomen und Landwirte, K. Manteuffel, Ed., vol. 3, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, Germany, 1st edition, 1974. View at Google Scholar