Analytical Cellular Pathology
 Journal metrics
Acceptance rate25%
Submission to final decision83 days
Acceptance to publication41 days
CiteScore3.100
Journal Citation Indicator0.520
Impact Factor2.916

Article of the Year 2020

Altered Expression of Three EGFR Posttranslational Regulators MDGI, MIG6, and EIG121 in Invasive Breast Carcinomas

Read the full article

 Journal profile

Analytical Cellular Pathology provides a forum for pathologists and medical practitioners working in the cellular pathology field. Topics covered include cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, and immunopathology.

 Editor spotlight

Chief Editor Professor Dimitrios Karamichos focuses on investigating corneal wound healing and dystrophies with a particular interest in the effect of transforming growth factor-β3 or TGF- β3 on corneal stromal cells and their extracellular environment.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Review Article

Antitumoral and Anti-inflammatory Roles of Somatostatin and Its Analogs in Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and affects about 8% of cirrhotic patients, with a recurrence rate of over 50%. There are numerous therapies available for the treatment of HCC, depending on cancer staging and condition of the patient. The complexity of the treatment is also justified by the unique pathogenesis of HCC that involves intricate processes such as chronic inflammation, fibrosis, and multiple molecular carcinogenesis events. During the last three decades, multiple in vivo and in vitro experiments have used somatostatin and its analogs (SSAs) to reduce the proliferative and metastatic potential of hepatoma cells by inducing their apoptosis and reducing angiogenesis and the inflammatory component of HCC. Most experiments have proven successful, revealing several different pathways and mechanisms corresponding to the aforementioned functions. Moreover, a correlation between specific effects and expression of somatostatin receptors (SSTRs) was observed in the studied cells. Clinical trials have tested either somatostatin or an analog, alone or in combination with other drugs, to explore the potential effects on HCC patients, in various stages of the disease. While the majority of these clinical trials exhibited minor to moderate success, some other studies were inconclusive or even reported negative outcomes. A complete evaluation of the efficacy of somatostatin and SSAs is still the matter of intense debate, and, if deemed useful, these substances may play a beneficial role in the management of HCC patients.

Research Article

Downregulation of lncRNA ANRIL Inhibits Osteogenic Differentiation of Periodontal Ligament Cells via Sponging miR-7 through NF-κB Pathway

Background. Long noncoding RNAs (lncRNAs) are dysregulated in periodontitis development and involved in osteogenesis. The current study was aimed at investigating the function of lncRNA ANRIL in periodontal ligament cells (PDLCs) and potential molecular mechanisms. Methods. Firstly, the level of ANRIL was tested by qPCR. Then, PDLCs were treated with a mineralizing solution to induce osteogenic differentiation. ALP activity was measured, and protein levels of BMP2, Osterix, and OCN were measured by Western blot. A target of ANRIL was verified using dual-luciferase reporter assay. miR-7 level was measured by qPCR, and the signals of the NF-κB pathway were tested by Western blot. Results. ANRIL expression was downregulated in PDL tissues. Next, ALP activity and protein levels of BMP2, Osterix, and OCN were increased to show that PDLCs were differentiated. ANRIL level was increased in differential PDLCs, in which knockdown inhibited osteogenic differentiation. Then, miR-7 was found as a target of ANRIL. The miR-7 level was upregulated in PDL tissues and reduced in differential PDLCs. Inhibition of miR-7 suppressed ALP activity and BMP2, Osterix, and OCN expression. Moreover, inhibition of miR-7 reversed the effects on the osteogenic differentiation induced by knockdown of ANRIL. Besides, the levels of p-P65 and p-IκBα were elevated by ANRIL downregulation and were rescued by suppressing miR-7. Conclusions. Knockdown of ANRIL inhibited osteogenic differentiation via sponging miR-7 through the NF-κB pathway, suggesting that ANRIL might be a therapeutic target for periodontitis.

Research Article

Mechanism of Chronic Stress-Induced Glutamatergic Neuronal Damage in the Basolateral Amygdaloid Nucleus

Stress is a ubiquitous part of our life, while appropriate stress levels can help improve the body’s adaptability to the environment. However, sustained and excessive levels of stress can lead to the occurrence of multiple devastating diseases. As an emotional center, the amygdala plays a key role in the regulation of stress-induced psycho-behavioral disorders. The structural changes in the amygdala have been shown to affect its functional characteristics. The amygdala-related neurotransmitter imbalance is closely related to psychobehavioral abnormalities. However, the mechanism of structural and functional changes of glutamatergic neurons in the amygdala induced by stress has not been fully elucidated. Here, we identified that chronic stress could lead to the degeneration and death of glutamatergic neurons in the lateral amygdaloid nucleus, resulting in neuroendocrine and psychobehavioral disorders. Therefore, our studies further suggest that the Protein Kinase R-like ER Kinase (PERK) pathway may be therapeutically targeted as one of the key mechanisms of stress-induced glutamatergic neuronal degeneration and death in the amygdala.

Research Article

Establishment and Mechanism Study of a Primary Ovarian Insufficiency Mouse Model Using Lipopolysaccharide

This study is aimed at establishing a lipopolysaccharide- (LPS-) induced primary ovarian insufficiency (POI) mouse model and investigating the underlying mechanism. C57BL/6N female mice were intraperitoneally injected with low-dose LPS (0.5 mg/kg) once daily for 14 days, high-dose LPS (2.5 mg/kg) twice weekly for 2 weeks, or cyclophosphamide (CTX; 150 mg/kg) once weekly for 2 weeks. Ovarian function was assessed by measuring the length of estrous cycle, the number of primordial follicles, and the levels of serum hormones. Expression and production of interleukin 1β (IL-1β) were determined to evaluate ovarian inflammation. Histopathological examination was performed to examine ovarian fibrosis. TUNEL assay was carried out to evaluate granulosa cell apoptosis. Western blotting was performed to measure the levels of inflammation-, fibrosis-, and apoptosis-related proteins in the mouse ovaries. Like CTX, both low- and high-dose LPS significantly impaired ovarian functions in mice, as evidenced by extended lengths of estrous cycles, reduced counts of primordial follicles, and alterations in the levels of serum hormones. Also, LPS promoted granulosa cell apoptosis and ovarian fibrosis in mice. However, LPS but not CTX promoted IL-1β expression and production in mice. Moreover, LPS but not CTX enhanced TLR, p-p65, p65, and MyD88 expression in mouse ovaries, suggesting that LPS differs from CTX in triggering ovarian inflammation. In general, continuous low-dose LPS stimulation was less potent than high-dose LPS to affect the ovarian functions. In conclusion, LPS may induce ovarian inflammation, fibrosis, and granulosa cell apoptosis and can be used to establish a POI model in mice.

Research Article

Nuclear Morphological Characteristics in Breast Cancer: Correlation with Hormone Receptor and Human Epidermal Growth Factor Receptor 2

Background. Hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) are the common diagnostic/prognostic markers in breast cancer. Few articles have recently reported the correlation between cytology and molecular subtypes. We combined nuclear morphological characteristics with HR and HER2 status to observe the relationship and provide ideas for machine learning. Methods. We reanalyzed fine-needle aspiration cytology samples and core-needle puncture histological specimens from 142 patients with invasive breast cancer between March 2019 and December 2019, and the findings were compared with the two groups (HR+/HER2- and HR-/HER2+) following nuclear cytomorphological features: nuclear/cytoplasmic ratio, difference of nuclear size, nuclear pleomorphism, chromatin feature, nuclear membrane and nucleoli, and Nottingham grading. Results. Two groups were significantly associated with the difference of nuclear size, nuclear pleomorphism, and nucleoli () and consistent with histological grading (). Moreover, nucleolar characteristics of size and number had obviously statistical significance (). Multiple micro-nucleoli were frequently seen in the HR+/HER2- group compared with the HR-/HER2+ group which mostly were observed centered medium-large nucleoli. We described four interesting nuclear morphologies in the experiment. Conclusions. There were significant differences in nuclear characteristics between two groups. HR and HER2 status not only might be predicted in cytological samples, but some specific nuclear morphological features might have potential value to help us understand molecular function and predict more information.

Review Article

Mitochondrial Mechanisms of Apoptosis and Necroptosis in Liver Diseases

In addition to playing a pivotal role in cellular energetics and biosynthesis, mitochondrial components are key operators in the regulation of cell death. In addition to apoptosis, necrosis is a highly relevant form of programmed liver cell death. Differential activation of specific forms of programmed cell death may not only affect the outcome of liver disease but may also provide new opportunities for therapeutic intervention. This review describes the role of mitochondria in cell death and the mechanism that leads to chronic liver hepatitis and liver cirrhosis. We focus on mitochondrial-driven apoptosis and current knowledge of necroptosis and discuss therapeutic strategies for targeting mitochondrial-mediated cell death in liver diseases.

Analytical Cellular Pathology
 Journal metrics
Acceptance rate25%
Submission to final decision83 days
Acceptance to publication41 days
CiteScore3.100
Journal Citation Indicator0.520
Impact Factor2.916
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.