Analytical Cellular Pathology

Analytical Cellular Pathology / 2009 / Article

Open Access

Volume 31 |Article ID 159371 | 7 pages | https://doi.org/10.3233/CLO-2009-0466

A Fast, Sensitive and Accurate High Resolution Melting (HRM) Technology-Based Assay to Screen for Common K-ras Mutations

Abstract

Background: Increasing evidence points to a negative correlation between K-ras mutations and patient’s response to, or survival benefit after, treatment with EGFR-inhibitors. Therefore, rapid and reliable assays for mutational analysis of the K-ras gene are strongly needed.Methods: We designed a high resolution melting (HRM) technology-based approach followed by direct sequencing to determine K-ras exon 1 (codons 12/13) tumour genotype.Results: Reconstruction experiments demonstrated an analytical sensitivity of the K-ras exon 1 HRM assay following sequencing of 1.5–2.5% of mutated DNA in a background of wild-type DNA. Assay reproducibility and accuracy were 100%. Application of the HRM assay following sequencing onto genomic DNA isolated from formalin-fixed paraffin-embedded tumour specimens of non-small cell lung cancer (n=91) and colorectal cancer (n=7) patients revealed nucleotide substitutions at codons 12 or 13, including a homozygous mutation, in 33 (34%) and 5 (5%) cases, respectively. Comparison to conventional nested-PCR following cycle-sequencing showed an overall high agreement in genotype findings (kappa value of 0.96), with more mutations detected by the HRM assay following sequencing.Conclusion: HRM allows rapid, reliable and sensitive pre-screening of routine diagnostic specimens for subsequent genotyping of K-ras mutations, even if present at low abundance or homozygosity, and may considerably facilitate personalized therapy planning.

Copyright © 2009 Hindawi Publishing Corporation and the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

117 Views | 296 Downloads | 36 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.