Analytical Cellular Pathology

Analytical Cellular Pathology / 2012 / Article
Special Issue

1st Congress of the International Academy of Digital Pathology Quebec City, Canada, August 3–5, 2011. Part II

View this Special Issue

Open Access

Volume 35 |Article ID 385271 | 4 pages | https://doi.org/10.3233/ACP-2011-0029

Mitotic Figure Recognition: Agreement among Pathologists and Computerized Detector

Abstract

Despite the prognostic importance of mitotic count as one of the components of the Bloom – Richardson grade [3], several studies ([2, 9, 10]) have found that pathologists’ agreement on the mitotic grade is fairly modest. Collecting a set of more than 4,200 candidate mitotic figures, we evaluate pathologists' agreement on individual figures, and train a computerized system for mitosis detection, comparing its performance to the classifications of three pathologists. The system’s and the pathologists’ classifications are based on evaluation of digital micrographs of hematoxylin and eosin stained breast tissue. On figures where the majority of pathologists agree on a classification, we compare the performance of the trained system to that of the individual pathologists. We find that the level of agreement of the pathologists ranges from slight to moderate, with strong biases, and that the system performs competitively in rating the ground truth set. This study is a step towards automatic mitosis count to accelerate a pathologist's work and improve reproducibility.

Copyright © 2012 Hindawi Publishing Corporation and the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

494 Views | 407 Downloads | 17 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.