Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2010 (2010), Article ID 127692, 5 pages
http://dx.doi.org/10.4061/2010/127692
Research Article

Detection of Mycobacterium avium ss. Paratuberculosis in Blau Syndrome Tissues

1Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, 600 Highland Avenue, Madison, WI 53792, USA
2Chippewa Valley Eye Clinic, 2715 Damon Street, Eau Claire, WI 54701, USA
3Kwik Trip Inc., 2302 Kwik Trip Way, La Crosse, WI 54602, USA

Received 2 January 2010; Revised 1 May 2010; Accepted 11 May 2010

Academic Editor: Edmond J. Yunis

Copyright © 2010 C. Thomas Dow and Jay L. E. Ellingson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. B. Blau, “Familial granulomatous arthritis, iritis, and rash,” Journal of Pediatrics, vol. 107, no. 5, pp. 689–693, 1985. View at Google Scholar · View at Scopus
  2. J. Hampe, J. Grebe, S. Nikolaus et al., “Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: a cohort study,” Lancet, vol. 359, no. 9318, pp. 1661–1665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Miceli-Richard, S. Lesage, M. Rybojad et al., “CARD15 mutations in Blau syndrome,” Nature Genetics, vol. 29, no. 1, pp. 19–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J.-P. Hugot, M. Chamaillard, H. Zouali et al., “Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease,” Nature, vol. 411, no. 6837, pp. 599–603, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Wang, H. Kuivaniemi, G. Bonavita et al., “CARD15 mutations in familial granulomatosis syndromes: a study of the original Blau syndrome kindred and other families with large-vessel arteritis and cranial neuropathy,” Arthritis and Rheumatism, vol. 46, no. 11, pp. 3041–3045, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Lesage, H. Zouali, J.-P. Cézard et al., “CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease,” American Journal of Human Genetics, vol. 70, no. 4, pp. 845–857, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Rahman, S. Bartlett, F. Siannis et al., “CARD15: a pleiotropic autoimmune gene that confers susceptibility to psoriatic arthritis,” American Journal of Human Genetics, vol. 73, no. 3, pp. 677–681, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Inohara, Y. Ogura, A. Fontalba et al., “Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5509–5512, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. S. E. Girardin, J.-P. Hugot, and P. J. Sansonetti, “Lessons from Nod2 studies: towards a link between Crohn's disease and bacterial sensing,” Trends in Immunology, vol. 24, no. 12, pp. 652–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P.-Y. Ting and B. K. Davis, “CATERPILLER: a novel gene family important in immunity, cell death, and diseases,” Annual Review of Immunology, vol. 23, pp. 387–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Tromp, H. Kuivaniemi, S. Raphael et al., “Genetic linkage of familial granulomatous inflammatory arthritis, skin rash, and uveitis to chromosome 16,” American Journal of Human Genetics, vol. 59, no. 5, pp. 1097–1107, 1996. View at Google Scholar · View at Scopus
  12. Y. Ogura, D. K. Bonen, N. Inohara et al., “A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease,” Nature, vol. 411, no. 6837, pp. 603–606, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. T. M. Martin, T. M. Doyle, J. R. Smith, D. Dinulescu, K. Rust, and J. T. Rosenbaum, “Uveitis in patients with sarcoidosis is not associated with mutations in NOD2 (CARD15),” American Journal of Ophthalmology, vol. 136, no. 5, pp. 933–935, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. van der Paardt, J. B. A. Crusius, M. H. M. T. de Koning et al., “CARD15 gene mutations are not associated with ankylosing spondylitis,” Genes and Immunity, vol. 4, no. 1, pp. 77–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Newman, L. A. Rubin, and K. A. Siminovitch, “NOD2/CARD15 gene mutation is not associated with susceptibility to Wegener's granulomatosis,” Journal of Rheumatology, vol. 30, no. 2, pp. 305–307, 2003. View at Google Scholar · View at Scopus
  16. I. Ferreiros-Vidal, J. Garcia-Meijide, P. Carreira et al., “The three most common CARD15 mutations associated with Crohn's disease and the chromosome 16 susceptibility locus for systemic lupus erythematosus,” Rheumatology, vol. 42, no. 4, pp. 570–574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Ferreirós-Vidal, F. Barros, J. L. Pablos, A. Carracedo, J. J. Gómez-Reino, and A. Gonzalez, “CARD15/NOD2 analysis in rheumatoid arthritis susceptibility,” Rheumatology, vol. 42, no. 11, pp. 1380–1382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. N. B. Harris and R. G. Barletta, “Mycobacterium avium subsp. paratuberculosis in veterinary medicine,” Clinical Microbiology Reviews, vol. 14, no. 3, pp. 489–512, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. T. Collins, D. C. Sockett, W. J. Goodger, T. A. Conrad, C. B. Thomas, and D. J. Carr, “Herd prevalence and geographic distribution of, and risk factors for, bovine paratuberculosis in Wisconsin,” Journal of the American Veterinary Medical Association, vol. 204, no. 4, pp. 636–641, 1994. View at Google Scholar · View at Scopus
  20. J. Hermon-Taylor, “Mycobacterium avium subspecies paratuberculosis in the causation of Crohn's disease,” World Journal of Gastroenterology, vol. 6, no. 5, pp. 630–632, 2000. View at Google Scholar · View at Scopus
  21. R. J. Greenstein, “Is Crohn's disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne's disease,” Lancet Infectious Diseases, vol. 3, no. 8, pp. 507–514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Abubakar, D. Myhill, S. H. Aliyu, and P. R. Hunter, “Detection of Mycobacterium avium subspecies paratubercubsis from patients with Crohn's disease using nucleic acid-based techniques: a systematic review and meta-analysis,” Inflammatory Bowel Diseases, vol. 14, no. 3, pp. 401–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Ogura, S. Lala, W. Xin et al., “Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis,” Gut, vol. 52, no. 11, pp. 1591–1597, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. H.-P. Török, J. Glas, P. Lohse, and C. Folwaczny, “Alterations of the CARD15/NOD2 gene and the impact on management and treatment of Crohn's disease patients,” Digestive Diseases, vol. 21, no. 4, pp. 339–345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. L. A. Sechi, M. Mura, F. Tanda, A. Lissia, G. Fadda, and S. Zanetti, “Mycobacterium avium sub. paratuberculosis in tissue samples of Crohn's disease patients,” New Microbiologica, vol. 27, no. 1, pp. 75–77, 2004. View at Google Scholar · View at Scopus
  26. S. Wall, Z. M. Kunze, S. Saboor et al., “Identification of spheroplast-like agents isolated from tissues of patients with Crohn's disease and control tissues by polymerase chain reaction,” Journal of Clinical Microbiology, vol. 31, no. 5, pp. 1241–1245, 1993. View at Google Scholar · View at Scopus
  27. M. E. Hines II and E. L. Styer, “Preliminary characterization of chemically generated Mycobacterium avium subsp. paratuberculosis cell wall deficient forms (spheroplasts),” Veterinary Microbiology, vol. 95, no. 4, pp. 247–258, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Lachnik, B. Ackermann, A. Bohrssen et al., “Rapid-cycle PCR and fluorimetry for detection of mycobacteria,” Journal of Clinical Microbiology, vol. 40, no. 9, pp. 3364–3373, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. O'Mahony and C. Hill, “A real time PCR assay for the detection and quantitation of Mycobacterium avium subsp. paratuberculosis using SYBR Green and the Light Cycler,” Journal of Microbiological Methods, vol. 51, no. 3, pp. 283–293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. T. J. Bull, E. J. McMinn, K. Sidi-Boumedine et al., “Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn's disease,” Journal of Clinical Microbiology, vol. 41, no. 7, pp. 2915–2923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. A. Naser, G. Ghobrial, C. Romero, and J. F. Valentine, “Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn's disease,” Lancet, vol. 364, no. 9439, pp. 1039–1044, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. N. M. Parrish, R. P. Radcliff, B. J. Brey et al., “Absence of Mycobacterium avium subsp. paratuberculosis in Crohn's patients,” Inflammatory Bowel Diseases, vol. 15, no. 4, pp. 558–565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. A. Naser, M. T. Collins, J. T. Crawford, and J. F. Valentine, “Culture of Mycobacterium avium subspecies paratuberculosis (MAP) from the blood of patients with Crohn's disease: a follow-up blind multi center investigation,” The Open Inflammation Journal, no. 2, pp. 22–23, 2009. View at Google Scholar
  34. F. A. K. el-Zaatari, S. A. Naser, D. C. Markesich, D. C. Kalter, L. Engstand, and D. Y. Graham, “Identification of Mycobacterium avium complex in sarcoidosis,” Journal of Clinical Microbiology, vol. 34, no. 9, pp. 2240–2245, 1996. View at Google Scholar · View at Scopus
  35. J. L. E. Ellingson, C. A. Bolin, and J. R. Stabel, “Identification of a gene unique to Mycobacterium avium subspecies paratuberculosis and application to diagnosis of paratuberculosis,” Molecular and Cellular Probes, vol. 12, no. 3, pp. 133–142, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. J.-P. De Chadarevian, S. A. Raphael, and G. F. Murphy, “Histologic, ultrastructural, and immunocytochemical features of the granulomas seen in a child with the syndrome of familial granulomatous arthritis, uveitis, and rash,” Archives of Pathology and Laboratory Medicine, vol. 117, no. 10, pp. 1050–1052, 1993. View at Google Scholar · View at Scopus
  37. S. K. Saini and C. D. Rose, “Liver involvement in familial granulomatous arthritis (Blau syndrome),” Journal of Rheumatology, vol. 23, no. 2, pp. 396–399, 1996. View at Google Scholar · View at Scopus
  38. S. S. Ting, J. Ziegler, and E. Fischer, “Familial granulomatous arthritis (Blau syndrome) with granulomatous renal lesions,” Journal of Pediatrics, vol. 133, no. 3, pp. 450–452, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. E. P. Green, M. L. V. Tizard, M. T. Moss et al., “Sequence and characteristics of IS900, an insertion element identified in a human Crohn's disease isolate of Mycobacterium paratuberculosis,” Nucleic Acids Research, vol. 17, no. 22, pp. 9063–9073, 1989. View at Google Scholar · View at Scopus
  40. J. M. Miller, A. L. Jenny, and J. L. Ellingson, “Polymerase chain reaction identification of Mycobacterium avium in formalin-fixed, paraffin-embedded animal tissues,” Journal of Veterinary Diagnostic Investigation, vol. 11, no. 5, pp. 436–440, 1999. View at Google Scholar · View at Scopus
  41. C. T. Dow, “Paratuberculosis and type I diabetes Is this the trigger?” Medical Hypotheses, vol. 67, no. 4, pp. 782–785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. C. T. Dow, “Cows, Crohn's and more: is Mycobacterium paratuberculosis a superantigen?” Medical Hypotheses, vol. 71, no. 6, pp. 858–861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. D'Amore, S. Lisi, M. Sisto, L. Cucci, and C. T. Dow, “Molecular identification of Mycobacterium avium subspecies paratuberculosis in an Italian patient with Hashimoto's thyroiditis and Melkersson-Rosenthal syndrome,” Journal of Medical Microbiology, vol. 59, no. 1, pp. 137–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. L. A. Sechi, V. Rosu, A. Pacifico et al., “Humoral immune responses of type 1 diabetes patients to M. avium subspecies paratuberculosis lend support to the infectious trigger hypothesis,” Clinical and Vaccine Immunology. In press.
  45. L. A. Sechi, D. Paccagnini, S. Salza, A. Pacifico, N. Ahmed, and S. Zanetti, “Mycobacterium avium subspecies paratuberculosis bacteremia in type 1 diabetes mellitus: an infectious trigger?” Clinical Infectious Diseases, vol. 46, no. 1, pp. 148–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Rosu, N. Ahmed, D. Paccagnini, A. Pacifico, S. Zanetti, and L. A. Sechi, “Mycobacterium avium subspecies paratuberculosis is not associated with type-2 diabetes mellitus,” Annals of Clinical Microbiology and Antimicrobials, vol. 7, article 9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Rosu, N. Ahmed, D. Paccagnini et al., “Specific immunoassays confirm association of Mycobacterium avium subsp. paratuberculosis with type-1 but not type-2 diabetes mellitus,” PLoS ONE, vol. 4, no. 2, article e4386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Paccagnini, L. Sieswerda, V. Rosu et al., “Linking chronic infection and autoimmune diseases: Mycobacterium avium subspecies paratuberculosis, SLC11A1 polymorphisms and type-1 diabetes mellitus,” PLoS ONE, vol. 4, no. 9, article e7109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. C. D. Rosé, T. M. Doyle, G. McIlvain-Simpson et al., “Blau syndrome mutation of CARD15/NOD2 in sporadic early onset granulomatous arthritis,” Journal of Rheumatology, vol. 32, no. 2, pp. 373–375, 2005. View at Google Scholar · View at Scopus
  50. N. Kanazawa, I. Okafuji, N. Kambe et al., “Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-κB activation: common genetic etiology with Blau syndrome,” Blood, vol. 105, no. 3, pp. 1195–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus