Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2011, Article ID 151258, 4 pages
http://dx.doi.org/10.4061/2011/151258
Clinical Study

Matrix Metalloproteinase-3 in Myasthenia Gravis Compared to Other Neurological Disorders and Healthy Controls

1Section for Neurology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
2Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway

Received 10 April 2011; Accepted 16 June 2011

Academic Editor: Shigeaki Suzuki

Copyright © 2011 Steven P. Luckman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Sternlicht and Z. Werb, “ECM proteinases,” in Guidebook to the Extracellular Matrix and Adhesion Proteins, T. Kreis and R. Vale, Eds., pp. 503–562, Oxford University Press, New York, NY, USA, 1999. View at Google Scholar
  2. V. W. Yong, S. M. Agrawal, and D. P. Stirling, “Targeting MMPs in acute and chronic neurological conditions,” Neurotherapeutics, vol. 4, no. 4, pp. 580–589, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. VanSaun and M. J. Werle, “Matrix metalloproteinase-3 removes agrin from synaptic basal lamina,” Journal of Neurobiology, vol. 43, no. 2, pp. 140–149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. VanSaun, A. A. Herrera, and M. J. Werle, “Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice,” Brain Cell Biology, vol. 32, no. 9, pp. 1129–1142, 2003. View at Google Scholar · View at Scopus
  5. J. M. Lindstrøm, M. E. Seybold, V. A. Lennon, S. Whittingham, and D. D. Duane, “Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value,” Neurology, vol. 51, pp. 933–939, 1998. View at Google Scholar
  6. A. Evoli, A. P. Batocchi, C. Minisci, C. Di Schino, and P. Tonali, “Therapeutic options in ocular myasthenia gravis,” Neuromuscular Disorders, vol. 11, no. 2, pp. 208–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Wilcox, “Myasthenia gravis,” Current Opinion in Immunology, vol. 5, pp. 910–917, 1993. View at Google Scholar
  8. Z. Li, N. Forester, and A. Vincent, “Modulation of acetylcholine receptor function in TE671 (rhabdomyocyosarcoma) cells by non-AchR ligands: possible relevance to seronegative myasthenia gravis,” Journal of Neuroimmunology, vol. 64, no. 2, pp. 179–183, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Mossman, A. Vincent, and J. Newsom-Davis, “Myasthenia gravis without acetylcholine receptor antibody: a distinct disease entity,” The Lancet, vol. 1, no. 8473, pp. 116–118, 1986. View at Google Scholar · View at Scopus
  10. W. Hoch, J. Mcconville, S. Helms, J. Newsom-Davis, A. Melms, and A. Vincent, “Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies,” Nature Medicine, vol. 7, no. 3, pp. 365–368, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. McConville, M. E. Farrugia, D. Beeson et al., “Detection and characterization of MuSK antibodies in seronegative myasthenia gravis,” Annals of Neurology, vol. 55, no. 4, pp. 580–584, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. C. Fuhrer, J. E. Sugiyama, R. G. Taylor, and Z. W. Hall, “Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle,” European Molecular Biology Organization Journal, vol. 16, no. 16, pp. 4951–4960, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. L. S. Borges and M. Ferns, “Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering,” Journal of Cell Biology, vol. 153, no. 1, pp. 1–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zucker, R. M. Lysik, M. H. Zarrabi et al., “Elevated plasma stromelysin levels in arthritis,” Journal of Rheumatology, vol. 21, no. 12, pp. 2329–2333, 1994. View at Google Scholar · View at Scopus
  15. L. Kotajima, S. Aotsuka, M. Fujimani et al., “Increased levels of matrix metalloproteinase-3 in sera from patients with active lupus nephritis,” Clinical and Experimental Rheumatology, vol. 16, no. 4, pp. 409–415, 1998. View at Google Scholar · View at Scopus
  16. P. B. Christensen, T. S. Jensen, I. Tsiropoulos et al., “Associated autoimmune diseases in myasthenia gravis. A population-based study,” Acta Neurologica Scandinavica, vol. 91, no. 3, pp. 192–195, 1995. View at Google Scholar · View at Scopus
  17. Z. Sthoeger, A. Neiman, D. Elbirt et al., “High prevalence of systemic lupus erythematosus in 78 myasthenia gravis patients: a clinical and serologic study,” American Journal of the Medical Sciences, vol. 331, no. 1, pp. 4–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Biró, Z. Szekanecz, L. Czirják et al., “Association of systemic and thyroid autoimmune diseases,” Clinical Rheumatology, vol. 25, no. 2, pp. 240–245, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. F. R. Romi, N. E. Gilhus, and S. P. Luckman, “Serum matrix metalloproteinase-3 (MMP-3) levels are elevated in myasthenia gravis,” Journal of Neuroimmunology, vol. 195, no. 1-2, pp. 96–99, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. Helgeland, A. Petzold, S. P. Luckman, N. E. Gilhus, G. T. Plant, and F. R. Romi, “Matrix metalloproteinases in Myasthenia Gravis,” European Neurology, vol. 65, no. 1, pp. 53–58, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. L. M. Lien, Y. C. Hsieh, C. H. Bai et al., “Association of blood active matrix metalloproteinase-3 with carotid plaque score from a community population in Taiwan,” Atherosclerosis, vol. 212, no. 2, pp. 595–600, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. T. Kanesaka, M. Mori, T. Hattori, T. Oki, and S. Kuwabara, “Serum matrix metalloproteinase-3 levels correlate with disease activity in relapsing-remitting multiple sclerosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 2, pp. 185–188, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. G. Jones, A. Herczeg, M. A. Ruegg, M. Lichtsteiner, S. Kröger, and H. R. Brenner, “Substrate-bound agrin induces expression of acetylcholine receptor-subunit gene in cultured mammalian muscle cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 5985–5990, 1996. View at Google Scholar · View at Scopus
  24. T. Meier, F. Masciulli, C. Moore et al., “Agrin can mediate acetylcholine receptor gene expression by aggregation of muscle-derived neuregulins,” Journal of Cell Biology, vol. 141, no. 3, pp. 715–726, 1998. View at Publisher · View at Google Scholar · View at Scopus