Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2013, Article ID 728529, 11 pages
http://dx.doi.org/10.1155/2013/728529
Review Article

p38 MAPK Signaling in Pemphigus: Implications for Skin Autoimmunity

1Cellular Immunotherapy and Molecular Immunodiagnostics, Institute for Research and Technology-Thessaly (I.RE.TE.TH), 41222 Larissa, Greece
2Institute of Liver Studies, Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at King’s College Hospital, Denmark Hill Campus, London SE5 9RS, UK
3Department of Animal Production, Technological Educational Institute of Larissa, 41110 Larissa, Greece
4Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41110 Larissa, Greece

Received 21 February 2013; Revised 18 June 2013; Accepted 19 June 2013

Academic Editor: Jozélio Freire De Carvalho

Copyright © 2013 Athanasios Mavropoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. S. Dhabhar, “Psychological stress and immunoprotection versus immunopathology in the skin,” Clinics in Dermatology, vol. 31, no. 1, pp. 18–30, 2013. View at Publisher · View at Google Scholar
  2. E. Moens and M. Veldhoen, “Epithelial barrier biology: good fences make good neighbours,” Immunology, vol. 135, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. R. L. Eckert, G. Adhikary, S. Balasubramanian et al., “Biochemistry of epidermal stem cells,” Biochim Biophys Acta, vol. 1830, no. 2, pp. 2427–2434, 2013. View at Publisher · View at Google Scholar
  4. M. Metz-Boutigue, P. Shooshtarizadeh, G. Prevost, Y. Haikel, and J. Chich, “Antimicrobial peptides present in mammalian skin and gut are multifunctional defence molecules,” Current Pharmaceutical Design, vol. 16, no. 9, pp. 1024–1039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Bautista, M. Pellegrino, and M. Tsunozaki, “TRPA1: a gatekeeper for inflammation,” Annual Review of Physiology, vol. 75, pp. 181–200, 2013. View at Publisher · View at Google Scholar
  6. M. P. Rodero and K. Khosrotehrani, “Skin wound healing modulation by macrophages,” International Journal of Clinical and Experimental Pathology, vol. 3, no. 7, pp. 643–653, 2010. View at Google Scholar · View at Scopus
  7. D. L. Woodland and J. E. Kohlmeier, “Migration, maintenance and recall of memory T cells in peripheral tissues,” Nature Reviews Immunology, vol. 9, no. 3, pp. 153–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. von Bubnoff, E. Andrès, F. Hentges, T. Bieber, T. Michel, and J. Zimmer, “Natural killer cells in atopic and autoimmune diseases of the skin,” Journal of Allergy and Clinical Immunology, vol. 125, no. 1–3, pp. 60–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. F. R. Rosenberg, S. Sanders, and C. T. Nelson, “Pemphigus. A 20 year review of 107 patients treated with corticosteroids,” Archives of Dermatology, vol. 112, no. 7, pp. 962–970, 1976. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Stanley, M. Yaar, P. Hawley-Nelson, and S. I. Katz, “Pemphigus antibodies identify a cell surface glycoprotein synthesized by human and mouse keratinocytes,” Journal of Clinical Investigation, vol. 70, no. 2, pp. 281–288, 1982. View at Google Scholar · View at Scopus
  11. M. Amagai, V. Klaus-Kovtun, and J. R. Stanley, “Autoantibodies against a novel epithelial cadherin in Pemphigus vulgaris, a disease of cell adhesion,” Cell, vol. 67, no. 5, pp. 869–877, 1991. View at Google Scholar · View at Scopus
  12. P. Berkowitz, M. Chua, Z. Liu, L. A. Diaz, and D. S. Rubenstein, “Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin,” American Journal of Pathology, vol. 173, no. 6, pp. 1628–1636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. E. Lee, P. Berkowitz, P. S. Jolly, L. A. Diaz, M. P. Chua, and D. S. Rubenstein, “Biphasic activation of p38MAPK suggests that apoptosis is a downstream event in pemphigus acantholysis,” Journal of Biological Chemistry, vol. 284, no. 18, pp. 12524–12532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Getsios, J. Waschke, L. Borradori, M. Hertl, and E. J. Müller, “From cell signaling to novel therapeutic concepts: international pemphigus meeting on advances in pemphigus research and therapy,” Journal of Investigative Dermatology, vol. 130, no. 7, pp. 1764–1768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis and therapy of psoriasis,” Nature, vol. 445, no. 7130, pp. 866–873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. F. O. Nestle, D. H. Kaplan, and J. Barker, “Mechanisms of disease: psoriasis,” New England Journal of Medicine, vol. 361, no. 5, pp. 444–509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Kagami, H. L. Rizzo, J. J. Lee, Y. Koguchi, and A. Blauvelt, “Circulating Th17, Th22, and Th1 cells are increased in psoriasis,” Journal of Investigative Dermatology, vol. 130, no. 5, pp. 1373–1383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Mattozzi, A. G. Richetta, C. Cantisani, L. Macaluso, and S. Calvieri, “Psoriasis: new insight about pathogenesis, role of barrier organ integrity, NLR/CATERPILLER family genes and microbial flora,” The Journal of Dermatology, vol. 39, no. 9, pp. 752–760, 2012. View at Publisher · View at Google Scholar
  19. P. Berkowitz, P. Hu, S. Warren, Z. Liu, L. A. Diaz, and D. S. Rubenstein, “p38MAPK inhibition prevents disease in Pemphigus vulgaris mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 34, pp. 12856–12860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Zheng, Z. Lin, Z. J. Zhao, Y. Yang, H. Niu, and X. Shen, “MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27,” Journal of Biological Chemistry, vol. 281, no. 48, pp. 37215–37226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Mao, Y. Sano, J. M. Park, and A. S. Payne, “p38 MAPK activation is downstream of the loss of intercellular adhesion in Pemphigus vulgaris,” Journal of Biological Chemistry, vol. 286, no. 2, pp. 1283–1291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. N. Stern, D. B. Keskin, N. Barteneva, J. Zuniga, E. J. Yunis, and A. R. Ahmed, “Possible role of natural killer cells in Pemphigus vulgaris-preliminary observations,” Clinical and Experimental Immunology, vol. 152, no. 3, pp. 472–481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Hashimoto, “Recent advances in the study of the pathophysiology of pemphigus,” Archives of Dermatological Research, vol. 295, supplement 1, pp. S2–S11, 2003. View at Google Scholar
  24. S. A. Grando, “Pemphigus autoimmunity: hypotheses and realities,” Autoimmunity, vol. 45, no. 1, pp. 7–35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Mao and A. S. Payne, “Seeking approval: present and future therapies for Pemphigus vulgaris,” Current Opinion in Investigational Drugs, vol. 9, no. 5, pp. 497–504, 2008. View at Google Scholar · View at Scopus
  26. I. Zagorodniuk, S. Weltfriend, L. Shtruminger et al., “A comparison of anti-desmoglein antibodies and indirect immunofluorescence in the serodiagnosis of Pemphigus vulgaris,” International Journal of Dermatology, vol. 44, no. 7, pp. 541–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Alaibac, A. Belloni-Fortina, D. Faggion et al., “Detection of autoantibodies against recombinant desmoglein 1 and 3 molecules in patients with Pemphigus vulgaris: correlation with disease extent at the time of diagnosis and during follow-up,” Clinical and Developmental Immunology, vol. 2009, Article ID 187864, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Tsunoda, T. Ota, M. Saito et al., “Pathogenic relevance of IgG and IgM antibodies against desmoglein 3 in blister formation in Pemphigus vulgaris,” American Journal of Pathology, vol. 179, no. 2, pp. 795–806, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. G. F. Diercks, H. H. Pas, and M. F. Jonkman, “The ultrastructure of acantholysis in Pemphigus vulgaris,” British Journal of Dermatology, vol. 160, no. 2, pp. 460–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. S. Payne, Y. Hanakawa, M. Amagai, and J. R. Stanley, “Desmosomes and disease: pemphigus and bullous impetigo,” Current Opinion in Cell Biology, vol. 16, no. 5, pp. 536–543, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Hartlieb, B. Kempf, M. Partilla, B. Vigh, V. Spindler, and J. Waschke, “Desmoglein 2 is less important than desmoglein 3 for keratinocyte cohesion,” PLoS One, vol. 8, no. 1, Article ID e53739, 2013. View at Publisher · View at Google Scholar
  32. R. W. Eyre and J. R. Stanley, “Human autoantibodies against a desmosomal protein complex with a calcium-sensitive epitope are characteristic of pemphigus foliaceus patients,” Journal of Experimental Medicine, vol. 165, no. 6, pp. 1719–1724, 1987. View at Google Scholar · View at Scopus
  33. V. T. Nguyen, A. Ndoye, L. D. Shultz, M. R. Pittelkow, and S. A. Grando, “Antibodies against keratinocyte antigens other than desmogleins 1 and 3 can induce Pemphigus vulgaris-like lesions,” Journal of Clinical Investigation, vol. 106, no. 12, pp. 1467–1479, 2000. View at Google Scholar · View at Scopus
  34. M. Hertl and C. Veldman, “T-cellular autoimmunity against desmogleins in pemphigus, an autoantibody-mediated bullous disorder of the skin,” Autoimmunity Reviews, vol. 2, no. 5, pp. 278–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. G. Mahoney, Z. Wang, K. Rothenberger, P. J. Koch, M. Amagai, and J. R. Stanley, “Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris,” Journal of Clinical Investigation, vol. 103, no. 4, pp. 461–468, 1999. View at Google Scholar · View at Scopus
  36. S. Morioka, G. S. Lazarus, and P. J. Jensen, “Involvement of urokinase-type plasminogen activator in acantholysis induced by pemphigus IgG,” Journal of Investigative Dermatology, vol. 89, no. 5, pp. 474–477, 1987. View at Google Scholar · View at Scopus
  37. K. H. Singer, K. Hashimoto, P. J. Jensen, S. Morioka, and G. S. Lazarus, “Pathogenesis of autoimmunity in pemphigus,” Annual Review of Immunology, vol. 3, pp. 87–108, 1985. View at Google Scholar · View at Scopus
  38. M. S. Lin, S. J. Swartz, A. Lopez et al., “Development and characterization of desmoglein-3 specific T cells from patients with Pemphigus vulgaris,” Journal of Clinical Investigation, vol. 99, no. 1, pp. 31–40, 1997. View at Google Scholar · View at Scopus
  39. Y. Yamamoto, Y. Aoyama, E. Shu, K. Tsunoda, M. Amagai, and Y. Kitajima, “Anti-desmoglein 3 (Dsg3) monoclonal antibodies deplete desmosomes of Dsg3 and differ in their Dsg3-depleting activities related to pathogenicity,” Journal of Biological Chemistry, vol. 282, no. 24, pp. 17866–17876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. P. J. Koch, M. G. Mahoney, H. Ishikawa et al., “Targeted disruption of the Pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to Pemphigus vulgaris,” Journal of Cell Biology, vol. 137, no. 5, pp. 1091–1102, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Amagai, K. Tsunoda, H. Suzuki, K. Nishifuji, S. Koyasu, and T. Nishikawa, “Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus,” Journal of Clinical Investigation, vol. 105, no. 5, pp. 625–631, 2000. View at Google Scholar · View at Scopus
  42. X. Mao, A. R. Nagler, S. A. Farber et al., “Autoimmunity to desmocollin 3 in Pemphigus vulgaris,” American Journal of Pathology, vol. 177, no. 6, pp. 2724–2730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Kawasaki, Y. Aoyama, K. Tsunoda, M. Amagai, and Y. Kitajima, “Pathogenic monoclonal antibody against desmoglein 3 augments desmoglein 3 and p38 MAPK phosphorylation in human squamous carcinoma cell line,” Autoimmunity, vol. 39, no. 7, pp. 587–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Lorch, J. Klessner, J. K. Park et al., “Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells,” Journal of Biological Chemistry, vol. 279, no. 35, pp. 37191–37200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Sharma, X. Mao, and A. S. Payne, “Beyond steric hindrance: the role of adhesion signaling pathways in the pathogenesis of pemphigus,” Journal of Dermatological Science, vol. 48, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. A. I. Chernyavsky, J. Arredondo, Y. Kitajima, M. Sato-Nagai, and S. A. Grando, “Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of Pemphigus vulgaris antigens,” Journal of Biological Chemistry, vol. 282, no. 18, pp. 13804–13812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Marchenko, A. I. Chernyavsky, J. Arredondo, V. Gindi, and S. A. Grando, “Antimitochondrial autoantibodies in Pemphigus vulgaris: a missing link in disease pathophysiology,” Journal of Biological Chemistry, vol. 285, no. 6, pp. 3695–3704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Spindler, V. Rotzer, C. Dehner et al., “Peptide-mediated desmoglein 3 crosslinking prevents Pemphigus vulgaris autoantibody-induced skin blistering,” Journal of Clinical Investigation, vol. 123, no. 2, pp. 800–811, 2013. View at Google Scholar
  49. M. Saito, S. N. Stahley, C. Y. Caughman et al., “Signaling dependent and independent mechanisms in Pemphigus vulgaris blister formation,” PLoS One, vol. 7, no. 12, Article ID e50696, 2012. View at Publisher · View at Google Scholar
  50. J. Saklatvala, “The p38 MAP kinase pathway as a therapeutic target in inflammatory disease,” Current Opinion in Pharmacology, vol. 4, no. 4, pp. 372–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Seko, S. Cole, W. Kasprzak, B. A. Shapiro, and J. A. Ragheb, “The role of cytokine mRNA stability in the pathogenesis of autoimmune disease,” Autoimmunity Reviews, vol. 5, no. 5, pp. 299–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Brook, G. Sully, A. R. Clark, and J. Saklatvala, “Regulation of tumour necrosis factor α mRNA stability by the mitogen-activated protein kinase p38 signalling cascade,” FEBS Letters, vol. 483, no. 1, pp. 57–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Mavropoulos, G. Sully, A. P. Cope, and A. R. Clark, “Stabilization of IFN-γ mRNA by MAPK p38 in IL-12- and IL-18-stimulated human NK cells,” Blood, vol. 105, no. 1, pp. 282–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Clark, J. Dean, C. Tudor, and J. Saklatvala, “Post-transcriptional gene regulation by MAP kinases via AU-rich elements,” Frontiers in Bioscience, vol. 14, no. 3, pp. 847–871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Otkjaer, H. Holtmann, T. W. Kragstrup et al., “The p38 MAPK regulates IL-24 expression by stabilization of the 3′ UTR of IL-24 mRNA,” PLoS ONE, vol. 5, no. 1, Article ID e8671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Dauletbaev, D. Eklove, N. Mawji et al., “Down-regulation of cytokine-induced interleukin-8 requires inhibition of p38 Mitogen-activated Protein Kinase (MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms,” Journal of Biological Chemistry, vol. 286, no. 18, pp. 15998–16007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. L. R. Coulthard, D. E. White, D. L. Jones, M. F. McDermott, and S. A. Burchill, “p38MAPK: stress responses from molecular mechanisms to therapeutics,” Trends in Molecular Medicine, vol. 15, no. 8, pp. 369–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Mavropoulos, T. Orfanidou, C. Liaskos et al., “p38 mitogen-activated protein kinase (p38 MAPK)-mediated autoimmunity: lessons to learn from ANCA vasculitis and Pemphigus vulgaris,” Autoimmunity Reviews, vol. 12, no. 5, pp. 580–590, 2013. View at Publisher · View at Google Scholar
  59. J. S. Arthur and J. Darragh, “Signaling downstream of p38 in psoriasis,” Journal of Investigative Dermatology, vol. 126, no. 8, pp. 1689–1691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Johansen, A. T. Funding, K. Otkjaer et al., “Protein expression of TNF-α in psoriatic skin is regulated at a posttranscriptional level by MAPK-activated protein kinase 2,” Journal of Immunology, vol. 176, no. 3, pp. 1431–1438, 2006. View at Google Scholar · View at Scopus
  61. B. B. Aggarwal, S. Shishodia, Y. Takada et al., “TNF blockade: an inflammatory issue,” Ernst Schering Research Foundation Workshop, no. 56, pp. 161–186, 2006. View at Google Scholar · View at Scopus
  62. L. Soegaard-Madsen, C. Johansen, L. Iversen, and K. Kragballe, “Adalimumab therapy rapidly inhibits p38 mitogen-activated protein kinase activity in lesional psoriatic skin preceding clinical improvement,” British Journal of Dermatology, vol. 162, no. 6, pp. 1216–1223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Mavropoulos, D. Smyk, E. I. Rigopoulou, and D. P. Bogdanos, “Human peripheral blood mononuclear cell culture for flow cytometric analysis of phosphorylated mitogen-activated protein kinases,” Methods in Molecular Biology, vol. 806, pp. 275–285, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. O. D. Perez, P. O. Krutzik, and G. P. Nolan, “Flow cytometric analysis of kinase signaling cascades,” Methods in Molecular Biology, vol. 263, pp. 67–94, 2004. View at Google Scholar · View at Scopus
  65. P. O. Krutzik, J. M. Irish, G. P. Nolan, and O. D. Perez, “Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications,” Clinical Immunology, vol. 110, no. 3, pp. 206–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. D. T. Montag and M. T. Lotze, “Rapid flow cytometric measurement of cytokine-induced phosphorylation pathways [CIPP] in human peripheral blood leukocytes,” Clinical Immunology, vol. 121, no. 2, pp. 215–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Mavropoulos, E. Spyrou, E. I. Rigopoulou, D. Vergani, G. N. Dalekos, and D. P. Bogdanos, “1107 Phosphorylation of P38 MAPK is detectable in NKT cells of patients with autoimmune hepatitis in whom it mirrors disease activity,” Journal of Hepatology, vol. 52, p. S428, 2010. View at Google Scholar
  68. G. Schett, J. Zwerina, and G. Firestein, “The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 7, pp. 909–916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. L. H. Pettus and R. P. Wurz, “Small molecule p38 MAP kinase inhibitors for the treatment of inflammatory diseases: novel structures and developments during 2006–2008,” Current Topics in Medicinal Chemistry, vol. 8, no. 16, pp. 1452–1467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. S. E. Sweeney, “The as-yet unfulfilled promise of p38 MAPK inhibitors,” Nature Reviews, vol. 5, no. 9, pp. 475–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Terajima, T. Inoue, K. Magari, H. Yamazaki, Y. Higashi, and H. Mizuhara, “Anti-inflammatory effect and selectivity profile of AS1940477, a novel and potent p38 mitogen-activated protein kinase inhibitor,” European Journal of Pharmacology, vol. 698, no. 1–3, pp. 455–462, 2013. View at Publisher · View at Google Scholar
  72. S. Medicherla, J. Y. Ma, M. Reddy et al., “Topical alpha-selective p38 MAP kinase inhibition reduces acute skin inflammation in guinea pig,” Journal of Inflammation Research, vol. 3, no. 1, pp. 9–16, 2010. View at Google Scholar · View at Scopus
  73. S. Wang, H. Uchi, S. Hayashida, K. Urabe, Y. Moroi, and M. Furue, “Differential expression of phosphorylated extracellular signal-regulated kinase 1/2, phosphorylated p38 mitogen-activated protein kinase and nuclear factor-κB p105/p50 in chronic inflammatory skin diseases,” Journal of Dermatology, vol. 36, no. 10, pp. 534–540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Jinlian, Z. Yingbin, and W. Chunbo, “p38 MAPK in regulating cellular responses to ultraviolet radiation,” Journal of Biomedical Science, vol. 14, no. 3, pp. 303–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Hildesheim, R. T. Awwad, and A. J. Fornace Jr., “p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses,” Journal of Investigative Dermatology, vol. 122, no. 2, pp. 497–502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Ipaktchi, A. Mattar, A. D. Niederbichler et al., “Topical p38MAPK inhibition reduces dermal inflammation and epithelial apoptosis in burn wounds,” Shock, vol. 26, no. 2, pp. 201–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Jonak, M. Mildner, G. Klosner et al., “The hsp27kD heat shock protein and p38-MAPK signaling are required for regular epidermal differentiation,” Journal of Dermatological Science, vol. 61, no. 1, pp. 32–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. H. Choi, D. K. Choi, K. C. Sohn et al., “Absence of a human DnaJ protein hTid-1S correlates with aberrant actin cytoskeleton organization in lesional psoriatic skin,” Journal of Biological Chemistry, vol. 287, no. 31, pp. 25954–25963, 2012. View at Publisher · View at Google Scholar
  79. B. Rock, R. S. Labib, and L. A. Diaz, “Monovalent Fab' immunoglobulin fragments from endemic pemphigus foliaceus autoantibodies reproduce the human disease in neonatal Balb/c mice,” Journal of Clinical Investigation, vol. 85, no. 1, pp. 296–299, 1990. View at Google Scholar · View at Scopus
  80. M. Kalantari-Dehaghi, G. J. Anhalt, M. J. Camilleri et al., “Pemphigus vulgaris autoantibody profiling by proteomic technique,” PLoS One, vol. 8, no. 3, Article ID e57587, 2013. View at Publisher · View at Google Scholar
  81. M. Papamichail, S. A. Perez, A. D. Gritzapis, and C. N. Baxevanis, “Natural killer lymphocytes: biology, development, and function,” Cancer Immunology, Immunotherapy, vol. 53, no. 3, pp. 176–186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Johansson, H. Hall, L. Berg, and P. Hoglund, “NK cells in autoimmune disease,” Current Topics in Microbiology and Immunology, vol. 298, pp. 259–277, 2006. View at Publisher · View at Google Scholar
  83. A. Cameron, B. Kirby, W. Fei, and C. Griffiths, “Natural killer and natural killer-T cells in psoriasis,” Archives of Dermatological Research, vol. 294, no. 8, pp. 363–369, 2002. View at Google Scholar · View at Scopus
  84. H. Takahashi, M. Amagai, A. Tanikawa et al., “T helper type 2-biased natural killer cell phenotype in patients with Pemphigus vulgaris,” Journal of Investigative Dermatology, vol. 127, no. 2, pp. 324–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Hervier, V. Beziat, J. Haroche et al., “Phenotype and function of natural killer cells in systemic lupus erythematosus: excess interferon-γ production in patients with active disease,” Arthritis and Rheumatism, vol. 63, no. 6, pp. 1698–1706, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. L. R. Zakka, E. Fradkov, D. B. Keskin, I. Tabansky, J. N. H. Stern, and A. R. Ahmed, “The role of natural killer cells in autoimmune blistering diseases,” Autoimmunity, vol. 45, no. 1, pp. 44–54, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. V. de Re, L. Caggiari, M. de Zorzi, and G. Toffoli, “KIR molecules: recent patents of interest for the diagnosis and treatment of several autoimmune diseases, chronic inflammation, and B-cell malignancies,” Recent Patents on DNA and Gene Sequences, vol. 5, no. 3, pp. 169–174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. D. G. Augusto, S. C. Lobo-Alves, M. F. Melo, N. F. Pereira, and M. L. Petzl-Erler, “Activating KIR and HLA Bw4 ligands are associated to decreased susceptibility to pemphigus foliaceus, an autoimmune blistering skin disease,” PLoS One, vol. 7, no. 7, Article ID e39991, 2012. View at Publisher · View at Google Scholar
  89. S. E. Dick and V. P. Werth, “Pemphigus: a treatment update,” Autoimmunity, vol. 39, no. 7, pp. 591–599, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. D. Tsuruta, N. Ishii, and T. Hashimoto, “Diagnosis and treatment of pemphigus,” Immunotherapy, vol. 4, no. 7, pp. 735–745, 2012. View at Publisher · View at Google Scholar
  91. S. Baum, S. Greenberger, L. Samuelov et al., “Methotrexate is an effective and safe adjuvant therapy for Pemphigus vulgaris,” European Journal of Dermatology, vol. 22, no. 1, pp. 83–87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Vyas, N. S. Patel, and G. F. Cohen, “Mycophenolate mofetil as a first-line steroid-sparing agent in the treatment of Pemphigus vulgaris,” Journal of Drugs in Dermatology, vol. 12, no. 2, pp. 210–216, 2013. View at Google Scholar
  93. R. J. Feldman and A. R. Ahmed, “Relevance of rituximab therapy in Pemphigus vulgaris: analysis of current data and the immunologic basis for its observed responses,” Expert Review of Clinical Immunology, vol. 7, no. 4, pp. 529–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. L. R. Zakka, S. S. Shetty, and A. R. Ahmed, “Rituximab in the treatment of Pemphigus vulgaris,” Dermatology and Therapy, vol. 2, no. 1, pp. 2–17, 2012. View at Publisher · View at Google Scholar
  95. A. R. Clark, “MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids?” Journal of Endocrinology, vol. 178, no. 1, pp. 5–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. R. Lang, M. Hammer, and J. Mages, “DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response,” Journal of Immunology, vol. 177, no. 11, pp. 7497–7504, 2006. View at Google Scholar · View at Scopus
  97. M. Lasa, S. M. Abraham, C. Boucheron, J. Saklatvala, and A. R. Clark, “Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38,” Molecular and Cellular Biology, vol. 22, no. 22, pp. 7802–7811, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. E. M. King, N. S. Holden, W. Gong, C. F. Rider, and R. Newton, “Inhibition of NF-κ-dependent transcription by MKP-1. Transcriptional repression by glucocorticoids occuring via p38 MAPK,” Journal of Biological Chemistry, vol. 284, no. 39, pp. 26803–26815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Lawan, E. Torrance, S. Al-Harthi et al., “MKP-2: out of the DUSP-bin and back into the limelight,” Biochemical Society Transactions, vol. 40, no. 1, pp. 235–239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. J. H. Hu, T. Chen, Z. H. Zhuang et al., “Feedback control of MKP-1 expression by p38,” Cellular Signalling, vol. 19, no. 2, pp. 393–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. R. B. Kjellerup, C. Johansen, K. Kragballe, and L. Iversen, “The expression of dual specificity phosphatase 1 mRNA is downregulated in lesional psoriatic skin,” British Journal of Dermatology, vol. 168, no. 2, pp. 339–345, 2013. View at Publisher · View at Google Scholar
  102. H. Y. Schultz, L. A. Diaz, D. A. Sirois, V. P. Werth, and S. A. Grando, “Generating consensus research goals and treatment strategies for pemphigus and pemphigoid: the 2010 JC Bystryn pemphigus and pemphigoid meeting,” Journal of Investigative Dermatology, vol. 131, no. 7, pp. 1395–1399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Cohen, “Targeting protein kinases for the development of anti-inflammatory drugs,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 317–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. I. M. Pedersen, A. M. Buhl, P. Klausen, C. H. Geisler, and J. Jurlander, “The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism,” Blood, vol. 99, no. 4, pp. 1314–1319, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Stewart, V. Malkovska, J. Krishnan, L. Lessin, and W. Barth, “Lymphoma in a patient with rheumatoid arthritis receiving methotrexate treatment: successful treatment with rituximab,” Annals of the Rheumatic Diseases, vol. 60, no. 9, pp. 892–893, 2001. View at Google Scholar · View at Scopus
  106. E. Kimby, “Tolerability and safety of rituximab (MabThera),” Cancer Treatment Reviews, vol. 31, no. 6, pp. 456–473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. T. G. Salopek, S. Logsetty, and E. E. Tredget, “Anti-CD20 chimeric monoclonal antibody (rituximab) for the treatment of recalcitrant, life-threatening Pemphigus vulgaris with implications in the pathogenesis of the disorder,” Journal of the American Academy of Dermatology, vol. 47, no. 5, pp. 785–788, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. M. J. Arin, A. Engert, T. Krieg, and N. Hunzelmann, “Anti-CD20 monoclonal antibody (rituximab) in the treatment of pemphigus,” British Journal of Dermatology, vol. 153, no. 3, pp. 620–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. H. H. Cho, S. P. Jin, and J. H. Chung, “Clinical experiences of different dosing schedules of rituximab in pemphigus with various disease severities,” Journal of the European Academy of Dermatology and Venereology, 2013. View at Publisher · View at Google Scholar
  110. M. I. Vega, S. Huerta-Yepaz, H. Garban, A. Jazirehi, C. Emmanouilides, and B. Bonavida, “Rituximab inhibits p38 MAPK activity in 2F7 B NHL and decreases IL-10 transcription: pivotal role of p38 MAPK in drug resistance,” Oncogene, vol. 23, no. 20, pp. 3530–3540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Jacobi, G. Schuler, and M. Hertl, “Rapid control of therapy-refractory Pemphigus vulgaris by treatment with the tumour necrosis factor-α inhibitor infliximab [6],” British Journal of Dermatology, vol. 153, no. 2, pp. 448–449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Shetty, C. B. Marcum, L. F. Glass, and J. D. Carter, “Successful treatment of Pemphigus vulgaris with etanercept in four patients,” Journal of Drugs in Dermatology, vol. 8, no. 10, pp. 940–943, 2009. View at Google Scholar · View at Scopus
  113. N. Cirillo, E. Cozzani, M. Carrozzo, and S. A. Grando, “Urban legends: Pemphigus vulgaris,” Oral Diseases, vol. 18, no. 5, pp. 442–458, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. S. A. Grando, J. Bystryn, A. I. Chernyavsky et al., “Apoptolysis: a novel mechanism of skin blistering in Pemphigus vulgaris linking the apoptotic pathways to basal cell shrinkage and suprabasal acantholysis,” Experimental Dermatology, vol. 18, no. 9, pp. 764–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. D. P. Bogdanos, H. Baum, M. Okamoto et al., “Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its lactobacillus mimic,” Hepatology, vol. 42, no. 2, pp. 458–465, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. D. P. Bogdanos, G. Mieli-Vergani, and D. Vergani, “Autoantibodies and their antigens in autoimmune hepatitis,” Seminars in Liver Disease, vol. 29, no. 3, pp. 241–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. E. I. Rigopoulou, E. T. Davies, D. Bogdanos et al., “Antimitochondrial antibodies of immunoglobulin G3 subclass are associated with a more severe disease course in primary biliary cirrhosis,” Liver International, vol. 27, no. 9, pp. 1226–1231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. D. S. Smyk, E. I. Rigopoulou, A. Lleo et al., “Immunopathogenesis of primary biliary cirrhosis: an old wives' tale,” Immunity and Ageing, vol. 8, no. 1, p. 12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. G. Mieli-Vergani and D. Vergani, “Autoimmune hepatitis,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 6, pp. 320–329, 2011. View at Publisher · View at Google Scholar · View at Scopus