Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2013, Article ID 827254, 17 pages
http://dx.doi.org/10.1155/2013/827254
Review Article

B Lymphocytes: Development, Tolerance, and Their Role in Autoimmunity—Focus on Systemic Lupus Erythematosus

Department of Internal Medicine, Division of Rheumatology, Fundación Valle del Lili, ICESI University School of Medicine, Cra 98 No. 18-49, Cali, Colombia

Received 30 June 2013; Accepted 6 August 2013

Academic Editor: Juan-Manuel Anaya

Copyright © 2013 Gabriel J. Tobón et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Treml, Y. Hao, J. E. Stadanlick, and M. P. Cancro, “The BLyS family: toward a molecular understanding of B cell homeostasis,” Cell Biochemistry and Biophysics, vol. 53, no. 1, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. A. Bonilla and H. C. Oettgen, “Adaptive immunity,” Journal of Allergy and Clinical Immunology, vol. 125, supplement 2, pp. S33–S40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Fuxa and J. A. Skok, “Transcriptional regulation in early B cell development,” Current Opinion in Immunology, vol. 19, no. 2, pp. 129–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. W. Lebien and T. F. Tedder, “B lymphocytes: how they develop and function,” Blood, vol. 112, no. 5, pp. 1570–1580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. H. Wang and Y. J. Liu, “The IL-17 cytokine family and their role in allergic inflammation,” Current Opinion in Immunology, vol. 20, no. 6, pp. 697–702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. D. Chaplin, “Overview of the immune response,” Journal of Allergy and Clinical Immunology, vol. 125, supplement 2, pp. S3–S23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. P. Huston, “The biology of the immune system,” Journal of the American Medical Association, vol. 278, no. 22, pp. 1804–1814, 1997. View at Google Scholar · View at Scopus
  8. W. N. Khan, “B cell receptor and BAFF receptor signaling regulation of B cell homeostasis,” Journal of Immunology, vol. 183, no. 6, pp. 3561–3567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Kurosaki and M. Hikida, “Tyrosine kinases and their substrates in B lymphocytes,” Immunological Reviews, vol. 228, no. 1, pp. 132–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Le Pottier, V. Devauchelle, J. Pers, C. Jamin, and P. Youinou, “The mosaic of B-cell subsets (with special emphasis on primary Sjögren's syndrome),” Autoimmunity Reviews, vol. 6, no. 3, pp. 149–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Palanichamy, J. Barnard, B. Zheng et al., “Novel human transitional B cell populations revealed by B cell depletion therapy,” Journal of Immunology, vol. 182, no. 10, pp. 5982–5993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Schiemann, J. L. Gommerman, K. Vora et al., “An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway,” Science, vol. 293, no. 5537, pp. 2111–2114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. B. Chung, R. A. Sater, M. L. Fields, J. Erikson, and J. G. Monroe, “CD23 defines two distinct subsets of immature B cells which differ in their responses to T cell help signals,” International Immunology, vol. 14, no. 2, pp. 157–166, 2002. View at Google Scholar · View at Scopus
  14. T. Saito, S. Chiba, M. Ichikawa et al., “Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development,” Immunity, vol. 18, no. 5, pp. 675–685, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Willenbrock, B. Jungnickel, M. Hansmann, and R. Küppers, “Human splenic marginal zone B cells lack expression of activation-induced cytidine deaminase,” European Journal of Immunology, vol. 35, no. 10, pp. 3002–3007, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Reif, E. H. Ekland, L. Ohl et al., “Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position,” Nature, vol. 416, no. 6876, pp. 94–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Cinamon, M. A. Zachariah, O. M. Lam, F. W. Foss Jr., and J. G. Cyster, “Follicular shuttling of marginal zone B cells facilitates antigen transport,” Nature Immunology, vol. 9, no. 1, pp. 54–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. D. C. Allen and J. G. Cyster, “Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function,” Seminars in Immunology, vol. 20, no. 1, pp. 14–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Pillai and A. Cariappa, “The follicular versus marginal zone B lymphocyte cell fate decision,” Nature Reviews Immunology, vol. 9, no. 11, pp. 767–777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Bende, F. Van Maldegem, and C. J. M. Van Noesel, “Chronic inflammatory disease, lymphoid tissue neogenesis and extranodal marginal zone B-cell lymphomas,” Haematologica, vol. 94, no. 8, pp. 1109–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. T. Hart, X. Wang, K. A. Hogquist, and S. C. Jameson, “Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 2, pp. 716–721, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. L. Hoek, L. E. Gordy, P. L. Collins et al., “Follicular B cell trafficking within the spleen actively restricts humoral immune responses,” Immunity, vol. 33, no. 2, pp. 254–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. E. J. Goetzl, W. Wang, C. McGiffert, M. Huang, and M. H. Gräler, “Sphingosine 1-phosphate and its G protein-coupled receptors constitute a multifunctional immunoregulatory system,” Journal of Cellular Biochemistry, vol. 92, no. 6, pp. 1104–1114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. H. Wang, Q. Wu, P. Yang et al., “Type i interferon-dependent CD86high marginal zone precursor b cells are potent T cell costimulators in mice,” Arthritis and Rheumatism, vol. 63, no. 4, pp. 1054–1064, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Shi, K. Harrison, G. L. Wilson, C. Moratz, and J. H. Kehrl, “RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13,” Journal of Immunology, vol. 169, no. 5, pp. 2507–2515, 2002. View at Google Scholar · View at Scopus
  26. V. Pascual, Y. Liu, A. Magalski, O. De Bouteiller, J. Banchereau, and J. D. Capra, “Analysis of somatic mutation in five B cell subsets of human tonsil,” Journal of Experimental Medicine, vol. 180, no. 1, pp. 329–339, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Odendahl, A. Jacobi, A. Hansen et al., “Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus,” Journal of Immunology, vol. 165, no. 10, pp. 5970–5979, 2000. View at Google Scholar · View at Scopus
  28. J. Lee, S. Kuchen, R. Fischer, S. Chang, and P. E. Lipsky, “Identification and characterization of a human CD5+ pre-naive B cell population,” Journal of Immunology, vol. 182, no. 7, pp. 4116–4126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G. P. Sims, R. Ettinger, Y. Shirota, C. H. Yarboro, G. G. Illei, and P. E. Lipsky, “Identification and characterization of circulating human transitional B cells,” Blood, vol. 105, no. 11, pp. 4390–4398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. O. Bohnhorst, M. B. Bjørgan, J. E. Thoen, J. B. Natvig, and K. M. Thompson, “Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjögren's syndrome,” Journal of Immunology, vol. 167, no. 7, pp. 3610–3618, 2001. View at Google Scholar · View at Scopus
  31. Y. Harada, M. M. Kawano, N. Huang et al., “Identification of early plasma cells in peripheral blood and their clinical significance,” British Journal of Haematology, vol. 92, no. 1, pp. 184–191, 1996. View at Google Scholar · View at Scopus
  32. A. M. Jacobi, M. Odendahl, K. Reiter et al., “Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 48, no. 5, pp. 1332–1342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. K. Parrish, I. Baez, T. Milford et al., “IL-7 dependence in human B lymphopoiesis increases during progression of ontogeny from cord blood to bone marrow,” Journal of Immunology, vol. 182, no. 7, pp. 4255–4266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Giliani, L. Mori, G. De Saint Basile et al., “Interleukin-7 receptor α (IL-7Rα) deficiency: cellular and molecular bases. Analysis of clinical, immunological, and molecular features in 16 novel patients,” Immunological Reviews, vol. 203, pp. 110–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Yoshimura, T. Naka, and M. Kubo, “SOCS proteins, cytokine signalling and immune regulation,” Nature Reviews Immunology, vol. 7, no. 6, pp. 454–465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Youinou, T. E. Taher, J. Pers, R. A. Mageed, and Y. Renaudineau, “B lymphocyte cytokines and rheumatic autoimmune disease,” Arthritis and Rheumatism, vol. 60, no. 7, pp. 1873–1880, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. I. Mitsias, A. G. Tzioufas, C. Veiopoulou et al., “The Th1/Th2 cytokine balance changes with the progress of the immunopathological lesion of Sjogren's syndrome,” Clinical and Experimental Immunology, vol. 128, no. 3, pp. 562–568, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Szodoray, P. Alex, J. G. Brun, M. Centola, and R. Jonsson, “Circulating cytokines in primary Sjögren's syndrome determined by a multiplex cytokine array system,” Scandinavian Journal of Immunology, vol. 59, no. 6, pp. 592–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Fuxa and M. Busslinger, “Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B cell identity function,” Journal of Immunology, vol. 178, no. 12, pp. 8222–8228, 2007. View at Google Scholar · View at Scopus
  40. S. Yurasov, H. Wardemann, J. Hammersen et al., “Defective B cell tolerance checkpoints in systemic lupus erythematosus,” Journal of Experimental Medicine, vol. 201, no. 5, pp. 703–711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Meyersa, Y. S. Nga, J. M. Bannocka et al., “Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 28, pp. 11554–11559, 2011. View at Publisher · View at Google Scholar
  42. E. T. Luning Prak, M. Monestier, and R. A. Eisenberg, “B cell receptor editing in tolerance and autoimmunity,” Annals of the New York Academy of Sciences, vol. 1217, no. 1, pp. 96–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Bergman and H. Cedar, “A stepwise epigenetic process controls immunoglobulin allelic exclusion,” Nature Reviews Immunology, vol. 4, no. 10, pp. 753–761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. R. C. Lindsley, M. Thomas, B. Srivastava, and D. Allman, “Generation of peripheral B cells occurs via two spatially and temporally distinct pathways,” Blood, vol. 109, no. 6, pp. 2521–2529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Bräuninger, T. Goossens, K. Rajewsky, and R. Küppers, “Regulation of immunoglobulin light chain gene rearrangements during early B cell development in the human,” European Journal of Immunology, vol. 31, no. 12, pp. 3631–3637, 2001. View at Google Scholar
  46. K. D. Klonowski, L. L. Primiano, and M. Monestier, “Atypical V(H)-D-J(H) rearrangements in newborn autoimmune MRL mice,” Journal of Immunology, vol. 162, no. 3, pp. 1566–1572, 1999. View at Google Scholar · View at Scopus
  47. K. D. Klonowski and M. Monestier, “Heavy chain revision in MRL mice: a potential mechanism for the development of autoreactive B cell precursors,” Journal of Immunology, vol. 165, no. 8, pp. 4487–4493, 2000. View at Google Scholar · View at Scopus
  48. E. Derudder, E. J. Cadera, J. C. Vahl et al., “Development of immunoglobulin λ-chain-positive B cells, but not editing of immunoglobulin κ-chain, depends on NF-κB signals,” Nature Immunology, vol. 10, no. 6, pp. 647–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. J. Benschop, D. Melamed, D. Nemazee, and J. C. Cambier, “Distinct signal thresholds for the unique antigen receptor-linked gene expression programs in mature and immature B cells,” Journal of Experimental Medicine, vol. 190, no. 6, pp. 749–756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Verkoczy, B. Duong, P. Skog et al., “Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection,” Journal of Immunology, vol. 178, no. 10, pp. 6332–6341, 2007. View at Google Scholar · View at Scopus
  51. M. J. Shlomchik, A. Marshak-Rothstein, and C. B. Wolfowicz, “The role of clonal selection and somatic mutation in autoimmunity,” Nature, vol. 328, no. 6133, pp. 805–811, 1987. View at Google Scholar · View at Scopus
  52. T. Litzenburger, H. Bluthmann, P. Morales et al., “Development of myelin oligodendrocyte glycoprotein autoreactive transgenic B lymphocytes: receptor editing in vivo after encounter of a self-antigen distinct from myelin oligodendrocyte glycoprotein,” Journal of Immunology, vol. 165, no. 9, pp. 5360–5366, 2000. View at Google Scholar · View at Scopus
  53. T. Litzenburger, R. Fässler, J. Bauer et al., “B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice,” Journal of Experimental Medicine, vol. 188, no. 1, pp. 169–180, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Menard, D. Saadoun, I. Isnardi et al., “The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans,” Journal of Clinical Investigation, vol. 121, no. 9, pp. 3635–3644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Inaoki, S. Sato, B. C. Weintraub, C. C. Goodnow, and T. F. Tedder, “CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes,” Journal of Experimental Medicine, vol. 186, no. 11, pp. 1923–1931, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Guerrier, P. Youinou, J. O. Pers, and C. Jamin, “TLR9 drives the development of transitional B cells towards the marginal zone pathway and promotes autoimmunity,” Journal of Autoimmunity, vol. 39, no. 3, pp. 173–179, 2012. View at Publisher · View at Google Scholar
  57. J. A. Lyons, M. San, M. P. Happ, and A. H. Cross, “B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide,” European Journal of Immunology, vol. 29, no. 11, pp. 3432–3439, 1999. View at Google Scholar
  58. E. Bettelli, D. Baeten, A. Jäger, R. A. Sobel, and V. K. Kuchroo, “Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice,” Journal of Clinical Investigation, vol. 116, no. 9, pp. 2393–2402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Krishnamoorthy, H. Lassmann, H. Wekerle, and A. Holz, “Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation,” Journal of Clinical Investigation, vol. 116, no. 9, pp. 2385–2392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. N. L. Monson, P. Cravens, R. Hussain et al., “Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis,” PLoS ONE, vol. 6, no. 2, Article ID e17103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. O. T. Chan, L. G. Hannum, A. M. Haberman, M. P. Madaio, and M. J. Shlomchik, “A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus,” Journal of Experimental Medicine, vol. 189, no. 10, pp. 1639–1648, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. F. S. Wong, L. Wen, M. Tang et al., “Investigation of the role of B-cells in type 1 diabetes in the NOD mouse,” Diabetes, vol. 53, no. 10, pp. 2581–2587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Tchernev and C. E. Orfanos, “Antigen mimicry, epitope spreading and the pathogenesis of pemphigus,” Tissue Antigens, vol. 68, no. 4, pp. 280–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Sokolove, R. Bromberg, K. D. Deane et al., “Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis,” PLoS One, vol. 7, Article ID e35296, 2012. View at Google Scholar
  65. B. L. McRae, C. L. Vanderlugt, M. C. Dal Canto, and S. D. Miller, “Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis,” Journal of Experimental Medicine, vol. 182, no. 1, pp. 75–85, 1995. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Tisch, X.-D. Yang, S. M. Singer, R. S. Liblau, L. Fugger, and H. O. McDevitt, “Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice,” Nature, vol. 366, no. 6450, pp. 72–75, 1993. View at Publisher · View at Google Scholar · View at Scopus
  67. A. G. Ziegler, M. Hummel, M. Schenker, and E. Bonifacio, “Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study,” Diabetes, vol. 48, no. 3, pp. 460–468, 1999. View at Google Scholar · View at Scopus
  68. D. van der Woude, S. Rantapää-Dahlqvist, A. Ioan-Facsinay et al., “Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 8, pp. 1554–1561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. M. R. Arbuckle, M. T. McClain, M. V. Rubertone et al., “Development of autoantibodies before the clinical onset of systemic lupus erythematosus,” New England Journal of Medicine, vol. 349, no. 16, pp. 1526–1533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Schneider, F. Mackay, V. Steiner et al., “BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1747–1756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Mackay and J. L. Browning, “BAFF: a fundamental survival factor for B cells,” Nature Reviews Immunology, vol. 2, no. 7, pp. 465–475, 2002. View at Google Scholar · View at Scopus
  72. F. Mackay, S. A. Woodcock, P. Lawton et al., “Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations,” Journal of Experimental Medicine, vol. 190, no. 11, pp. 1697–1710, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Brink, “Regulation of B cell self-tolerance by BAFF,” Seminars in Immunology, vol. 18, no. 5, pp. 276–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Schiemann, J. L. Gommerman, K. Vora et al., “An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway,” Science, vol. 293, no. 5537, pp. 2111–2114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Lesley, Y. Xu, S. L. Kalled et al., “Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF,” Immunity, vol. 20, no. 4, pp. 441–453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Thien, T. G. Phan, S. Gardam et al., “Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches,” Immunity, vol. 20, no. 6, pp. 785–798, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. J. R. Groom, C. A. Fletcher, S. N. Walters et al., “BAFF and MyD88 signals promote a lupuslike disease independent of T cells,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1959–1971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. F. Mackay, J. R. Groom, and S. G. Tangye, “An important role for B-cell activation factor and B cells in the pathogenesis of Sjögren's syndrome,” Current Opinion in Rheumatology, vol. 19, no. 5, pp. 406–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Youinou, C. Jamin, and P. M. Lydyard, “CD5 expression in human B-cell populations,” Immunology Today, vol. 20, no. 7, pp. 312–316, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Berland and H. H. Wortis, “Origins and functions of B-1 cells with notes on the role of CD5,” Annual Review of Immunology, vol. 20, pp. 253–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Yanaba, J. D. Bouaziz, K. M. Haas, J. C. Poe, M. Fujimoto, and T. F. Tedder, “A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses,” Immunity, vol. 28, no. 5, pp. 639–650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Mauri, D. Gray, N. Mushtaq, and M. Londei, “Prevention of arthritis by interleukin 10-producing B cells,” Journal of Experimental Medicine, vol. 197, no. 4, pp. 489–501, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Garaud, A. Morva, S. Lemoine et al., “CD5 promotes IL-10 production in chronic lymphocytic leukemia B cells through STAT3 and NFAT2 activation,” Journal of Immunology, vol. 186, no. 8, pp. 4835–4844, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Renaudineau, S. Hillion, A. Saraux, R. A. Mageed, and P. Youinou, “An alternative exon 1 of the CD5 gene regulates CD5 expression in human B lymphocytes,” Blood, vol. 106, no. 8, pp. 2781–2789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Garaud, C. Le Dantec, S. Jousse-Joulin et al., “IL-6 Modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation,” Journal of Immunology, vol. 182, no. 9, pp. 5623–5632, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Hillion, A. Saraux, P. Youinou, and C. Jamin, “Expression of RAGs in peripheral B cells outside Germinal Centers is associated with the expression of CD5,” Journal of Immunology, vol. 174, no. 9, pp. 5553–5561, 2005. View at Google Scholar · View at Scopus
  87. S. Hillion, M. Dueymes, P. Youinou, and C. Jamin, “IL-6 contributes to the expression of RAGs in human mature B cells,” Journal of Immunology, vol. 179, no. 10, pp. 6790–6798, 2007. View at Google Scholar · View at Scopus
  88. K. L. Hippen, L. E. Tze, and T. W. Behrens, “CD5 maintains tolerance in anergic B cells,” Journal of Experimental Medicine, vol. 191, no. 5, pp. 883–889, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. J. C. Poe, M. Hasegawa, and T. F. Tedder, “CD19, CD21, and CD22: multifaceted response regulators of B lymphocyte signal transduction,” International Reviews of Immunology, vol. 20, no. 6, pp. 739–762, 2001. View at Google Scholar · View at Scopus
  90. N. R. Pritchard and K. G. C. Smith, “B cell inhibitory receptors and autoimmunity,” Immunology, vol. 108, no. 3, pp. 263–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. G. Cyster and C. C. Goodnow, “Tuning antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment,” Immunity, vol. 6, no. 5, pp. 509–517, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. T. F. Tedder, J. Tuscano, S. Sato, and J. H. Kehrl, “CD22, A B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling,” Annual Review of Immunology, vol. 15, pp. 481–504, 1997. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Sato, A. S. Miller, M. Inaoki et al., “CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice,” Immunity, vol. 5, no. 6, pp. 551–562, 1996. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Nitschke, “The role of CD22 and other inhibitory co-receptors in B-cell activation,” Current Opinion in Immunology, vol. 17, no. 3, pp. 290–297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Engel, Y. Nojima, D. Rothstein et al., “The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils, and monocytes,” Journal of Immunology, vol. 150, no. 11, pp. 4719–4732, 1993. View at Google Scholar · View at Scopus
  96. T. F. Tedder, J. C. Poe, and K. M. Haas, “CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction,” Advances in Immunology, vol. 88, pp. 1–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. C. M. Grimaldi, R. Hicks, and B. Diamond, “B cell selection and susceptibility to autoimmunity,” Journal of Immunology, vol. 174, no. 4, pp. 1775–1781, 2005. View at Google Scholar · View at Scopus
  98. J. A. Walker and K. G. C. Smith, “CD22: an inhibitory enigma,” Immunology, vol. 123, no. 3, pp. 314–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. L. Jin, P. A. McLean, B. G. Neel, and H. H. Wortis, “Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling,” Journal of Experimental Medicine, vol. 195, no. 9, pp. 1199–1205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. T. L. O'Keefe, G. T. Williams, S. L. Davies, and M. S. Neuberger, “Hyperresponsive B cells in CD22-deficient mice,” Science, vol. 274, no. 5288, pp. 798–801, 1996. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Dörner, J. Kaufmann, W. A. Wegener, N. Teoh, D. M. Goldenberg, and G. R. Burmester, “Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 8, no. 3, p. R74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. A. M. Jacobi, D. M. Goldenberg, F. Hiepe, A. Radbruch, G. R. Burmester, and T. Dörner, “Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls,” Annals of the Rheumatic Diseases, vol. 67, no. 4, pp. 450–457, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. S. D. Steinfeld, L. Tant, G. R. Burmester et al., “Epratuzumab (humanised anti-CD22 antibody) in primary Sjögren's syndrome: an open-label phase I/II study,” Arthritis Research and Therapy, vol. 8, no. 4, p. R129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Mizoguchi, E. Mizoguchi, H. Takedatsu, R. S. Blumberg, and A. K. Bhan, “Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation,” Immunity, vol. 16, no. 2, pp. 219–230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Fillatreau, C. H. Sweenie, M. J. McGeachy, D. Gray, and S. M. Anderton, “B cells regulate autoimmunity by provision of IL-10,” Nature Immunology, vol. 3, no. 10, pp. 944–950, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Mauri, D. Gray, N. Mushtaq, and M. Londei, “Prevention of arthritis by interleukin 10-producing B cells,” Journal of Experimental Medicine, vol. 197, no. 4, pp. 489–501, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Wei, P. Velazquez, O. Turovskaya et al., “Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 2010–2015, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. T. Tretter, R. K. C. Venigalla, V. Eckstein et al., “Induction of CD4+ T-cell anergy and apoptosis by activated human B cells,” Blood, vol. 112, no. 12, pp. 4555–4564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Mizoguchi, E. Mizoguchi, R. N. Smith, F. I. Preffer, and A. K. Bhan, “Suppressive role of B cells in chronic colitis of T cell receptor α mutant mice,” Journal of Experimental Medicine, vol. 186, no. 10, pp. 1749–1756, 1997. View at Publisher · View at Google Scholar · View at Scopus
  110. J. G. Evans, K. A. Chavez-Rueda, A. Eddaoudi et al., “Novel suppressive function of transitional 2 B cells in experimental arthritis,” Journal of Immunology, vol. 178, no. 12, pp. 7868–7878, 2007. View at Google Scholar · View at Scopus
  111. P. A. Blair, K. A. Chavez-Rueda, J. G. Evans et al., “Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice,” Journal of Immunology, vol. 182, no. 6, pp. 3492–3502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. P. A. Blair, L. Y. Noreña, F. Flores-Borja et al., “CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients,” Immunity, vol. 32, no. 1, pp. 129–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Jamin, A. Morva, S. Lemoine, C. Daridon, A. R. De Mendoza, and P. Youinou, “Regulatory B lymphocytes in humans: a potential role in autoimmunity,” Arthritis and Rheumatism, vol. 58, no. 7, pp. 1900–1906, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Duddy, M. Niino, F. Adatia et al., “Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis,” Journal of Immunology, vol. 178, no. 10, pp. 6092–6099, 2007. View at Google Scholar · View at Scopus
  115. J. Correale, M. Farez, and G. Razzitte, “Helminth infections associated with multiple sclerosis induce regulatory B cells,” Annals of Neurology, vol. 64, no. 2, pp. 187–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Mauri, “Regulation of immunity and autoimmunity by B cells,” Current Opinion in Immunology, vol. 22, no. 6, pp. 761–767, 2010. View at Publisher · View at Google Scholar
  117. S. Lemoine, A. Morva, P. Youinou, and C. Jamin, “Human T cells induce their own regulation through activation of B cells,” Journal of Autoimmunity, vol. 36, no. 3-4, pp. 228–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Morva, S. Lemoine, A. Achour, J. Pers, P. Youinou, and C. Jamin, “Maturation and function of human dendritic cells are regulated by B lymphocytes,” Blood, vol. 119, no. 1, pp. 106–114, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Lemoine, A. Morva, P. Youinou, and C. Jamin, “Regulatory B cells in autoimmune diseases: how do they work,” Annals of the New York Academy of Sciences, vol. 1173, pp. 260–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. D. A. Einfeld, J. P. Brown, M. A. Valentine, E. A. Clark, and J. A. Ledbetter, “Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains,” EMBO Journal, vol. 7, no. 3, pp. 711–717, 1988. View at Google Scholar · View at Scopus
  121. M. A. Valentine, K. E. Meier, S. Rossie, and E. A. Clark, “Phosphorylation of the CD20 phosphoprotein in resting B lymphocytes. Regulation by protein kinase C,” Journal of Biological Chemistry, vol. 264, no. 19, pp. 11282–11287, 1989. View at Google Scholar · View at Scopus
  122. K. C. Anderson, M. P. Bates, and B. L. Slaughenhoupt, “Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation,” Blood, vol. 63, no. 6, pp. 1424–1433, 1984. View at Google Scholar · View at Scopus
  123. J. H. Anolik, J. Barnard, A. Cappione et al., “Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 50, no. 11, pp. 3580–3590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. M. J. Leandro, J. C. Edwards, G. Cambridge, M. R. Ehrenstein, and D. A. Isenberg, “An open study of B lymphocyte depletion in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 46, no. 10, pp. 2673–2677, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Ramos-Casals, M. J. Soto, M. J. Cuadrado, and M. A. Khamashta, “Rituximab in systemic lupus erythematosus A systematic review of off-label use in 188 cases,” Lupus, vol. 18, no. 9, pp. 767–776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Merrill, J. Buyon, R. Furie et al., “Assessment of flares in lupus patients enrolled in a phase II/III study of rituximab (EXPLORER),” Lupus, vol. 20, no. 7, pp. 709–716, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. B. H. Rovin, R. Furie, K. Latinis et al., “Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study,” Arthritis & Rheumatism, vol. 64, no. 4, pp. 1215–1226, 2012. View at Publisher · View at Google Scholar
  128. C. Daridon, D. Blassfeld, K. Reiter et al., “Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 12, no. 6, p. R204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. S. V. Navarra, R. M. Guzmán, A. E. Gallacher et al., “Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial,” The Lancet, vol. 377, no. 9767, pp. 721–731, 2011. View at Publisher · View at Google Scholar · View at Scopus