Table of Contents
Advances in Electronics
Volume 2014 (2014), Article ID 981295, 21 pages
http://dx.doi.org/10.1155/2014/981295
Review Article

Advances in Microelectronics for Implantable Medical Devices

Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

Received 2 December 2013; Accepted 18 February 2014; Published 29 April 2014

Academic Editor: Sebastian Hoyos

Copyright © 2014 Andreas Demosthenous. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Ward, S. Henderson, and N. H. Metcalfe, “A short history on pacemakers,” International Journal of Cardiology, vol. 169, no. 4, pp. 244–248, 2013. View at Google Scholar
  2. P. E. Vardas, E. N. Simantirakis, and E. M. Kanoupakis, “New developments in cardiac pacemakers,” Circulation, vol. 127, pp. 2343–2350, 2013. View at Google Scholar
  3. F. G. Zeng, S. Rebscher, W. V. Harrison, X. Sun, and H. Feng, “Cochlear implants: system design, integration, and evaluation,” IEEE Reviews in Biomedical Engineering, vol. 1, pp. 115–142, 2008. View at Google Scholar
  4. B. S. Wilson and M. F. Dorman, “Cochlear implants: a remarkable past and a brilliant future,” Hearing Research, vol. 242, no. 1-2, pp. 3–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Ong and L. da Cruz, “The bionic eye: a review,” Clinical & Experimental Ophthalmology, vol. 40, pp. 6–17, 2012. View at Google Scholar
  6. T. Guenther, N. H. Lovell, and G. J. Suaning, “Bionic vision: system architectures—a review,” Expert Review of Medical Devices, vol. 9, no. 1, pp. 33–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Wall III, D. M. Merfeld, S. D. Rauch, and F. O. Black, “Vestibular prostheses: the engineering and biomedical issues,” Journal of Vestibular Research: Equilibrium and Orientation, vol. 12, no. 2-3, pp. 95–113, 2002-2003. View at Google Scholar · View at Scopus
  8. G. Y. Fridman and C. C. Della Santina, “Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency,” Anatomical Record, vol. 295, pp. 2010–2029, 2012. View at Google Scholar
  9. S. Miocinovic, S. Somayajula, S. Chitnis, and J. L. Vitek, “History, applications, and mechanisms of deep brain stimulation,” JAMA Neurology, vol. 70, no. 2, pp. 163–171, 2013. View at Google Scholar
  10. H. M. Lee, H. Park, and M. Ghovanloo, “A power-efficient wireless system with adaptive supply control for deep brain stimulation,” IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2203–2216, 2013. View at Google Scholar
  11. V. Valente, A. Demosthenous, and R. Bayford, “A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 3, pp. 197–207, 2012. View at Google Scholar
  12. V. Valente, A. Demosthenous, and R. Bayford, “Output stage of a current-steering multipolar and multisite deep brain stimulator,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (BiOCAS '13), pp. 85–88, Rotterdam, The Netherlands, October-November 2013.
  13. J. DiGiovanna, W. Gong, C. Haburcakova et al., “Development of a closed-loop neural prosthesis for vestibular disorders,” Journal of Automatic Control, vol. 20, pp. 27–32, 2010. View at Google Scholar
  14. A. Berényi, M. Belluscio, D. Mao, and G. Buzsáki, “Closed-loop control of epilepsy by transcranial electrical stimulation,” Science, vol. 337, pp. 735–737, 2012. View at Google Scholar
  15. K. Abdelhalim, H. M. Jafari, L. Kokarovtseva, J. L. Perez Velazquez, and R. Genov, “64-channel UWB wireless neural vector analyzer SOC with a closed-loop phase synchrony-triggered neurostimulator,” IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2494–2515, 2013. View at Google Scholar
  16. G. E. Loeb and R. A. Peck, “Cuff electrodes for chronic stimulation and recording of peripheral nerve activity,” Journal of Neuroscience Methods, vol. 64, no. 1, pp. 95–103, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. R. B. Stein, D. Charles, L. David, J. Jhamandas, A. Mannard, and T. R. Nichols, “Principles underlying new methods for chronic neural recording,” Canadian Journal of Neurological Sciences, vol. 2, no. 3, pp. 235–244, 1975. View at Google Scholar
  18. C. T. Nordhausen, E. M. Maynard, and R. A. Normann, “Single unit recording capabilities of a 100 microelectrode array,” Brain Research, vol. 726, no. 1-2, pp. 129–140, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. Dickey, A. Suminski, Y. Amit, and N. G. Hatsopoulos, “Single-unit stability using chronically implanted multielectrode arrays,” Journal of Neurophysiology, vol. 102, no. 2, pp. 1331–1339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Mittal, E. Pokushalov, A. Romanov et al., “Long-term ECG monitoring using an implantable loop recorder for the detection of atrial fibrillation after cavotricuspid isthmus ablation in patients with atrial flutter,” Heart Rhythm, vol. 10, no. 11, pp. 1598–1604, 2013. View at Google Scholar
  21. Y. Nemirovsky, I. Brouk, and C. G. Jakobson, “1/f noise in CMOS transistors for analog applications,” IEEE Transactions on Electron Devices, vol. 48, no. 5, pp. 921–927, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. E. A. M. Klumperink, S. L. J. Gierkink, A. P. van der Wel, and B. Nauta, “Reducing MOSFET 1/f noise and power consumption by switched biasing,” IEEE Journal of Solid-State Circuits, vol. 35, no. 7, pp. 994–1001, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-J. Min, C.-K. Kwon, H.-K. Kim, C. Kim, and S.-W. Kim, “A CMOS magnetic hall sensor using a switched biasing amplifier,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1195–1196, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. C. C. Enz, E. A. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE Journal of Solid-State Circuits, vol. 22, no. 3, pp. 335–342, 1986. View at Google Scholar · View at Scopus
  25. A. Uranga, X. Navarro, and N. Barniol, “Integrated CMOS amplifier for ENG signal recording,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 12, pp. 2188–2194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, and A. Kelly, “A2 μw 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2934–2945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Tseng, Y. Ho, S. Kao, and C. N. I. S. Su, “A 0.09 μ W low power front-end biopotential amplifier for biosignal recording,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 5, pp. 508–516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. R. F. Yazicioglu, P. Merken, R. Puers, and C. van Hoof, “A 60 μW 60 nV/Hz readout front-end for portable biopotential acquisition systems,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1100–1110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Lee, M. Johnson, and D. Kipke, “A tunable biquad switched-capacitor amplifier-filter for neural recording,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 5, pp. 295–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Balasubramanian, P. F. Ruedi, Y. Temiz, A. Ferretti, C. Guiducci, and C. C. Enz, “A 0.18 μm biosensor front-end based on 1/f noise, distortion cancelation and chopper stabilization techniques,” IEEE Transaction on Biomedical Circuits and Systems, vol. 7, no. 5, pp. 660–673, 2013. View at Google Scholar
  31. C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of Op-Amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of the IEEE, vol. 84, no. 11, pp. 1584–1614, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. C.-H. Chan, J. Wills, J. LaCoss, J. J. Granacki, and J. Choma Jr., “A novel variable-gain micro-power band-pass auto-zeroing CMOS amplifier,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '07), pp. 337–340, May 2007. View at Scopus
  33. Y. Masui, T. Yoshida, M. Sasaki, and A. Iwata, “0.6 V supply complementary metal oxide semiconductor amplifier using noise reduction technique of autozeroing and chopper stabilization,” Japanese Journal of Applied Physics, vol. 46, no. 4B, pp. 2252–2256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 958–965, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Rodríguez-Pérez, J. Ruiz-Amaya, M. Delgado-Restituto, and A. Rodríguez-Vázquez, “A low-power programmable neural spike detection channel with embedded calibration and data compression,” IEEE Transaction on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 87–100, 2012. View at Google Scholar
  36. S. Song, M. J. Rooijakkers, P. Harpe et al., “A 430 nW 64 nV/Hz current-reuse telescopic amplifier for neural recording applications,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (BiOCAS '13), pp. 322–325, Rotterdam, The Netherlands, October-November 2013.
  37. F. Zhang, J. Holleman, and B. P. Otis, “Design of ultra-low power biopotential amplifiers for biosignal acquisition applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 344–355, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Song, M. J. Rooijakkers, P. Harpe et al., “A 430nW 64nV/Hz current-reuse telescopic amplifier for neural recording applications,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (BiOCAS '13), pp. 322–325, Rotterdam, The Netherlands, October-November 2013.
  39. X. Zou, L. Liu, J. H. Cheong et al., “A 100-channel 1-mW implantable neural recording IC,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 10, pp. 2584–2596, 2013. View at Google Scholar
  40. P. Kmon and P. Gryboś, “Energy efficient low-noise multichannel amplifier in submicron CMOS process,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 7, pp. 1764–1775, 2013. View at Google Scholar
  41. J. Gak, M. R. Miguez, and A. Arnaud, “Nanopower OTAs with improved linearity and low input offset using bulk degeneration,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 3, pp. 689–698, 2014. View at Publisher · View at Google Scholar
  42. V. Majidzadeh, A. Schmid, and Y. Leblebici, “Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 3, pp. 262–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. S. J. Steyaert and W. M. C. Sansen, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1163–1168, 1987. View at Google Scholar · View at Scopus
  44. K. A. Ng and Y. P. Xu, “A compact, low input capacitance neural recording amplifier,” IEEE Transaction on Biomedical Circuits and Systems, vol. 7, no. 5, pp. 610–620, 2013. View at Google Scholar
  45. B. Gosselin, M. Sawan, and C. A. Chapman, “A low-power integrated bioamplifier with active low-frequency suppression,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 3, pp. 184–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Y. Wu, W. M. Chen, and L. T. Kuo, “A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording,” IEEE Transaction on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 107–114, 2013. View at Google Scholar
  47. A. Demosthenous and I. F. Triantis, “An adaptive ENG amplifier for tripolar cuff electrodes,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 412–420, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Rieger, M. Schuettler, D. Pal et al., “Very low-noise ENG amplifier system using CMOS technology,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 6, pp. 427–437, 2006. View at Google Scholar
  49. Y. J. Jung, B. S. Park, H. M. Kwon et al., “A novel BJT structure implemented using CMOS processes for high-performance analog circuit applications,” IEEE Transactions on Semiconductor Manufacturing, vol. 25, no. 4, pp. 549–554, 2012. View at Google Scholar
  50. M. Degrauwe, E. Vittoz, and I. Verbauwhede, “A micropower CMOS instrumentation amplifier,” IEEE Journal of Solid-State Circuits, vol. 20, no. 3, pp. 805–807, 1985. View at Google Scholar · View at Scopus
  51. A. Worapishet, A. Demosthenous, and X. Liu, “A CMOS instrumentation amplifier with 90-dB CMRR at 2-MHz using capacitive neutralization: analysis, design considerations, and implementation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 4, pp. 699–710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Demosthenous, I. Pachnis, D. Jiang, and N. Donaldson, “An integrated amplifier with passive neutralization of myoelectric interference from neural recording tripoles,” IEEE Sensors Journal, vol. 13, no. 9, pp. 3236–3248, 2013. View at Google Scholar
  53. A. Rodríguez-Pérez, M. Delgado-Restituto, and F. Medeiro, “A 515 nW, 0–18 dB programmable gain analog-to-digital converter for in-channel neural recording interfaces,” IEEE Transactions on Biomedical Circuits and Systems, 2013. View at Publisher · View at Google Scholar
  54. Y. Ming, D. A. Borton, J. Aceros, W. R. Patterson, and A. V. Nurmikko, “A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 115–128, 2013. View at Google Scholar
  55. M. S. Chae, Z. Yang, M. R. Yuce, L. Hoang, and W. Liu, “A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 4, pp. 312–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Gao, R. M. Walker, P. Nuyujukian et al., “HermesE: a 96-channel full data rate direct neural interface in 0.13 μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 47, no. 4, pp. 1043–1055, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Gibson, J. W. Judy, and D. Marković, “Spike sorting: the first step in decoding the brain: the first step in decoding the brain,” IEEE Signal Processing Magazine, vol. 29, no. 1, pp. 124–143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. R. R. Harrison, R. J. Kier, C. A. Chestek et al., “Wireless neural recording with single low-power integrated circuit,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 4, pp. 322–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. A. M. Sodagar, G. E. Perlin, Y. Yao, K. Najafi, and K. D. Wise, “An implantable 64-channel wireless microsystem for single-unit neural recording,” IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2591–2604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Gibson, J. W. Judy, and D. Marković, “Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 5, pp. 469–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Karkare, S. Gibson, and D. Marković, “A 130-μ W, 64-channel neural spike-sorting DSP chip,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1214–1222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. T. M. Seese, H. Harasaki, G. M. Saidel, and C. R. Davies, “Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating,” Laboratory Investigation, vol. 78, no. 12, pp. 1553–1562, 1998. View at Google Scholar · View at Scopus
  63. K. G. Oweiss, A. Mason, Y. Suhail, A. M. Kamboh, and K. E. Thomson, “A scalable wavelet transform VLSI architecture for real-time signal processing in high-density intra-cortical implants,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 6, pp. 1266–1278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Charbiwala, V. Karkare, S. Gibson, D. Marković, and M. B. Srivastava, “Compressive sensing of neural action potentials using a learned union of supports,” in Proceedings of the 8th International Conference on Body Sensor Networks (BSN '11), pp. 53–58, Dallas, Tex, USA, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Suo, J. Zhang, R. Etienne-Cummings, T. D. Tran, and S. Chin, “Energy-efficient two-stage compressed sensing method for implantable neural recordings,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (BiOCAS '13), pp. 150–153, Rotterdam, The Netherlands, October-November 2013.
  67. A. Rodríguez-Pérez, J. Masuch, J. A. Rodríguez-Rodríguez, M. Delgado-Restituto, and A. Rodríguez-Vázquez, “A 64-channel inductively-powered neural recording sensor array,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (BiOCAS '12), pp. 228–231, Hsinchu, Taiwan, November 2012.
  68. J. Simpson and M. Ghovanloo, “An experimental study of voltage, current, and charge controlled stimulation front-end circuitry,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '07), pp. 325–328, New Orleans, La, USA, May 2007. View at Scopus
  69. X. Liu, A. Demosthenous, and N. Donaldson, “An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 3, pp. 231–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. P. J. Langlois, A. Demosthenous, I. Pachnis, and N. Donaldson, “High-power integrated stimulator output stages with floating discharge over a wide voltage range for nerve stimulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 1, pp. 39–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Jiang, A. Demosthenous, T. Perkins, X. Liu, and N. Donaldson, “A stimulator ASIC featuring versatile management for vestibular prostheses,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 2, pp. 147–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. X. Liu, A. Demosthenous, and N. Donaldson, “An integrated stimulator with DC-isolation and fine current control for implanted nerve tripoles,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1701–1714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Liu, A. Demosthenous, A. Vanhoestenberghe, D. Jiang, and N. Donaldson, “Active Books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 3, pp. 216–227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. S. K. Kelly and J. L. Wyatt Jr., “A power-efficient voltage-based neural tissue stimulator with energy recovery,” in Proceedings of the IEEE Solid-State Circuits Conference (ISSCC '04), San Francisco, Calif, USA, February 2004.
  75. S. K. Kelly and J. L. Wyatt Jr., “A power-efficient neural tissue stimulator with energy recovery,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 1, pp. 20–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. X. Liu, A. Demosthenous, and N. Donaldson, “Implantable stimulator failures: causes, outcomes, and solutions,” in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '07), pp. 5786–5789, Lyon, France, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Nonclercq, L. Lonys, A. Vanhoestenberghe, A. Demosthenous, and N. Donaldson, “Safety of multi-channel stimulation implants: a single blocking capacitor per channel is not sufficient after single-fault failure,” Medical & Biological Engineering & Computing, vol. 50, no. 4, pp. 403–410, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. J.-J. Sit and R. Sarpeshkar, “A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with lesst than 6 nA DC error for 1-mA: full-scale stimulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 3, pp. 172–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Ortmanns, A. Rocke, M. Gehrke, and H.-J. Tiedtke, “A 232-channel epiretinal stimulator ASIC,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2946–2959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Williams and T. G. Constandinou, “An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 129–139, 2013. View at Google Scholar
  81. S. K. Arfin and R. Sarpeshkar, “An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 1, pp. 1–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. U. Çilingiroğlu and S. İpek, “A zero-voltage switching technique for minimizing the current-source power of implanted stimulators,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 4, pp. 469–479, 2013. View at Google Scholar
  83. D. Jiang, A. Demosthenous, T. Perkins, D. Cirmirakis, X. Liu, and N. Donaldson, “An implantable 3-D vestibular stimulator with neural recording,” in Proceedings of the 38th European Solid-State Circuits Conference (ESSCIRC '12), pp. 277–280, Bordeaux, France, September 2012.
  84. P. Bradley, “Wireless medical implant technology—recent advances and future developments,” in Proceedings of the 37th European Solid-State Circuits Conference (ESSCIRC '11), pp. 54–58, Helsinki, Finland, September 2011.
  85. H. Yu, C.-M. Tang, and R. Bashirullah, “An asymmetric RF tagging IC for ingestible medication compliance capsules,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC '09), pp. 101–104, Boston, Mass, USA, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. D. Cirmirakis, D. Jiang, A. Demosthenous, N. Donaldson, and T. Perkins, “A telemetry operated vestibular prosthesis,” in Proceedings of the 19th International Conference on Electronics, Circuits, and Systems (ICECS '12), pp. 576–578, Seville, Spain, December 2012.
  87. M. Sawan, Y. Hu, and J. Coulombe, “Wireless smart implants dedicated to multichannel monitoring and microstimulation,” IEEE Circuits and Systems Magazine, vol. 5, no. 1, pp. 21–39, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. A. Hannan, S. M. Abbas, S. A. Samad, and A. Hussain, “Modulation techniques for biomedical implanted devices and their challenges,” Sensors, vol. 12, no. 1, pp. 297–319, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. K. M. Silay, C. Dehollain, and M. Declercq, “Inductive power link for a wireless cortical implant with biocompatible packaging,” in Proceedings of the 9th IEEE Sensors Conference (SENSORS '10), pp. 94–98, Kona, Hawaii, USA, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. M. A. Adeeb, A. B. Islam, M. R. Haider, F. S. Tulip, M. N. Ericson, and S. K. Islam, “An inductive link-based wireless power transfer system for biomedical applications,” Active and Passive Electronic Components, vol. 2012, Article ID 879294, 11 pages, 2012. View at Publisher · View at Google Scholar
  91. R. R. Harrison, “Designing efficient inductive power links for implantable devices,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '07), pp. 2080–2083, New Orleans, La, USA, May 2007. View at Scopus
  92. F. E. Terman, Electronic and Radio Engineering, McGraw-Hill, New York, NY, USA, 4th edition, 1955.
  93. N. Donaldson and T. A. Perkins, “Analysis of resonant coupled coils in the design of radio frequency transcutaneous links,” Medical & Biological Engineering & Computing, vol. 21, no. 5, pp. 612–627, 1983. View at Google Scholar · View at Scopus
  94. D. Cirmirakis, Novel telemetry system for closed loop vestibular prosthesis [Ph.D. thesis], University College London, London, UK, 2013.
  95. D. C. Galbraith, M. Soma, and R. L. White, “A wide-band efficient inductive transdermal power and data link with coupling insensitive gain,” IEEE Transactions on Biomedical Engineering, vol. 34, no. 4, pp. 265–275, 1987. View at Google Scholar · View at Scopus
  96. G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, “Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 10, pp. 2109–2117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Si, A. P. Hu, S. Malpas, and D. Budgett, “A frequency control method for regulating wireless power to implantable devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 1, pp. 22–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Simard, M. Sawan, and D. Massicotte, “High-speed OQPSK and efficient power transfer through inductive link for biomedical implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 192–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Donaldson, “Passive signalling via inductive coupling,” Medical & Biological Engineering & Computing, vol. 24, no. 2, pp. 223–224, 1986. View at Publisher · View at Google Scholar · View at Scopus
  100. Z. Tang, B. Smith, J. H. Schild, and P. H. Peckham, “Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator,” IEEE Transactions on Biomedical Engineering, vol. 42, no. 5, pp. 524–528, 1995. View at Publisher · View at Google Scholar · View at Scopus
  101. W. Xu, Z. Luo, and S. Sonkusale, “Fully digital BPSK demodulator and multilevel LSK back telemetry for biomedical implant transceivers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 9, pp. 714–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Zhou and N. Donaldson, “A fast passive data transmission method for ENG telemetry,” Neuromodulation, vol. 6, no. 2, pp. 116–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Cirmirakis, D. Jiang, A. Demosthenous, N. Donaldson, and T. Perkins, “A fast passive phase shift modulator for inductively coupled implanted medical devices,” in Proceedings of the 38th European Solid-State Circuits Conference (ESSCIRC '12), pp. 301–304, Bordeaux, France, September 2012.
  104. M. Kiani and M. Ghovanloo, “A 20-Mb/s pulse harmonic modulation transceiver for wideband near-field data transmission,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 7, pp. 382–386, 2013. View at Google Scholar
  105. M. Ghovanloo and K. Najafi, “A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 12, pp. 2374–2383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. Z. Luo and S. Sonkusale, “A novel BPSK demodulator for biological implants,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1478–1484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. P. P. Mercier, A. C. Lysaght, S. Bandyopadhyay, A. P. Chandrakasan, and K. M. Stankovic, “Energy extraction from the biologic battery in the inner ear,” Nature Biotechnology, vol. 30, no. 12, pp. 1240–1243, 2012. View at Google Scholar
  108. N. Saeidi, M. Schuettler, A. Demosthenous, and N. Donaldson, “Technology for integrated circuit micropackages for neural interfaces, based on gold-silicon wafer bonding,” Journal of Micromechanics and Microengineering, vol. 23, Article ID 075021, 12 pages, 2013. View at Publisher · View at Google Scholar
  109. P. Mohseni and K. Najafi, “A fully integrated neural recording amplifier with DC input stabilization,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 5, pp. 832–837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. W. S. Liew, X. D. Zou, L. B. Yao, and Y. Lian, “A 1-V 60µW 16-channel interface chip for implantable neural recording,” in Proceedings of the 31st IEEE Custom Integrated Circuits Conference (CICC '09), pp. 507–510, San Jose, Calif, USA, September 2009.
  111. S. Rai, J. Holleman, J. N. Pandey, F. Zhang, and B. Otis, “A 500μW neural tag with 2μVrms AFE and frequency-multiplying MICS/ISM FSK transmitter,” in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC '09), vol. 1, pp. 212–213, San Francisco, Calif, USA, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. F. Shahrokhi, K. Abdelhalim, D. Serletis, P. L. Carlen, and R. Genov, “The 128-channel fully differential digital integrated neural recording and stimulation interface,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 149–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. R. R. Harrison, P. T. Watkins, R. J. Kier et al., “A low-power integrated circuit for a wireless 100-electrode neural recording system,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 123–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Bonfanti, M. Ceravolo, G. Zambra et al., “A multi-channel low-power IC for neural spike recording with data compression and narrowband 400-MHz MC-FSK wireless transmission,” in Proceedings of the 36th European Solid-State Circuits Conference (ESSCIRC '10), pp. 330–333, Seville, Spain, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. S. B. Lee, H.-M. Lee, M. Kiani, U.-M. Jow, and M. Ghovanloo, “An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 6, pp. 360–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. K. Abdelhalim, L. Kokarovtseva, J. L. P. Velazquez, and R. Genov, “915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters,” IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2478–2493, 2013. View at Google Scholar