Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2009 (2009), Article ID 790687, 8 pages
http://dx.doi.org/10.1155/2009/790687
Review Article

Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

1Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
2Soil and Environmental College, Shenyang Agricultural University, 110161 Shenyang, China

Received 22 April 2009; Revised 24 June 2009; Accepted 19 September 2009

Academic Editor: Liliana Gianfreda

Copyright © 2009 Guiwei Qu and Amarilis de Varennes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Belén-Hinojosa, J. A. Carreira, R. García-Ruíz, and R. P. Dick, “Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils,” Soil Biology and Biochemistry, vol. 36, no. 10, pp. 1559–1568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Belén-Hinojosa, R. García-Ruíz, B. Viñegla, and J. A. Carreira, “Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill,” Soil Biology and Biochemistry, vol. 36, no. 10, pp. 1637–1644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Kizilkaya, T. Askn, B. Bayraklı, and M. Saglam, “Microbiological characteristics of soils contaminated with heavy metals,” European Journal of Soil Biology, vol. 40, no. 2, pp. 95–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Izquierdo, F. Caravaca, M. M. Alguacil, G. Hernández, and A. Roldán, “Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions,” Applied Soil Ecology, vol. 30, no. 1, pp. 3–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Pérez-de-Mora, J. J. Ortega-Calvo, F. Cabrera, and E. Madejón, “Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil,” Applied Soil Ecology, vol. 28, no. 2, pp. 125–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pérez-de-Mora, P. Burgos, E. Madejón, F. Cabrera, P. Jaeckel, and M. Schloter, “Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments,” Soil Biology and Biochemistry, vol. 38, no. 2, pp. 327–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. C. Srivastava and U. C. Gupta, Trace Elements in Crop Production, Science, Lebanon, Ohio, USA, 1996.
  8. S. Brown, M. Sprenger, A. Maxemchuk, and H. Compton, “Ecosystem function in alluvial tailings after biosolids and lime addition,” Journal of Environmental Quality, vol. 34, no. 1, pp. 139–148, 2005. View at Google Scholar · View at Scopus
  9. G. M. Tordoff, A. J. M. Baker, and A. J. Willis, “Current approaches to the revegetation and reclamation of metalliferous mine wastes,” Chemosphere, vol. 41, no. 1-2, pp. 219–228, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. N. T. Basta, R. Gradwohl, K. L. Snethen, and J. L. Schroder, “Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate,” Journal of Environmental Quality, vol. 30, no. 4, pp. 1222–1230, 2001. View at Google Scholar · View at Scopus
  11. S. Brown, R. L. Chaney, J. G. Hallfrisch, and Q. Xue, “Effect of biosolids processing on lead bioavailability in an urban soil,” Journal of Environmental Quality, vol. 32, no. 1, pp. 100–108, 2003. View at Google Scholar · View at Scopus
  12. M. H. Wong, “Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils,” Chemosphere, vol. 50, no. 6, pp. 775–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Alvarenga, P. Palma, A. P. Gonçalves et al., “Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin,” Chemosphere, vol. 72, no. 11, pp. 1774–1781, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. N. T. Basta and J. J. Sloan, “Bioavailablility of heavy metals in strongly acidic soils treated with exceptional quality biosolids,” Journal of Environmental Quality, vol. 28, no. 2, pp. 633–638, 1999. View at Google Scholar · View at Scopus
  15. R. P. Narwal and B. R. Singh, “Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil,” Water, Air, and Soil Pollution, vol. 103, no. 1–4, pp. 405–421, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Walker, R. Clemente, A. Roig, and M. P. Bernal, “The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils,” Environmental Pollution, vol. 122, no. 2, pp. 303–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. J. Walker, R. Clemente, and M. P. Bernal, “Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste,” Chemosphere, vol. 57, no. 3, pp. 215–224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Alvarenga, A. P. Gonçalves, R. M. Fernandes et al., “Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics,” Chemosphere, vol. 74, no. 10, pp. 1292–1300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Alvarenga, P. Palma, A. P. Gonçalves et al., “Organic residues as immobilizing agents in aided phytostabilization: (II) effects on soil biochemical and ecotoxicological characteristics,” Chemosphere, vol. 74, no. 10, pp. 1301–1308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. YunKai, Y. PeiLing, and L. HongLu, “Review on super absorbent polymers application in agriculture and its effects,” Transactions of the Chinese Society of Agricultural Engineering, vol. 18, no. 2, pp. 182–187, 2002. View at Google Scholar
  21. J. E. Martin, “Environmental impact studies of the disposal of polyacrylate polymers used in consumer products,” Science of the Total Environment, vol. 191, no. 3, pp. 225–234, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Guiwei, A. de Varennes, and C. Cunha-Queda, “Remediation of a mine soil with insoluble polyacrylate polymers enhances soil quality and plant growth,” Soil Use and Management, vol. 24, no. 4, pp. 350–356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. K. C. Taylor and R. G. Halfacre, “The effect of hydrophilic polymer on media retention and nutrient availability to Ligustrum lucidum,” HortScience, vol. 21, no. 5, pp. 1159–1161, 1986. View at Google Scholar
  24. M. Silberbush, E. Adar, and Y. De Malach, “Use of an hydrophilic polymer to improve water storage and availability to crops grown in sand dunes I. Corn irrigated by trickling,” Agricultural Water Management, vol. 23, no. 4, pp. 303–313, 1993. View at Google Scholar · View at Scopus
  25. M. Silberbush, E. Adar, and Y. De Malach, “Use of an hydrophilic polymer to improve water storage and availability to crops grown in sand dunes II. Cabbage irrigated by sprinkling with different water salinities,” Agricultural Water Management, vol. 23, no. 4, pp. 315–327, 1993. View at Google Scholar · View at Scopus
  26. A. de Varennes, M. O. Torres, E. Conceição, and E. Vasconcelos, “Effect of polyacrylate polymers with different counter ions on the growth and mineral composition of perennial ryegrass,” Journal of Plant Nutrition, vol. 22, no. 1, pp. 33–43, 1999. View at Google Scholar · View at Scopus
  27. S. C. Jarvis and M. J. Hopper, “The uptake of sodium by perennial ryegrass and its relationship to potassium supply in flowing solution culture,” Plant and Soil, vol. 60, no. 1, pp. 73–83, 1981. View at Publisher · View at Google Scholar · View at Scopus
  28. A. de Varennes, M. Goss, and M. Mourato, “Remediation of a sandy soil contaminated with cadmium, nickel, and zinc using an insoluble polyacrylate polymer,” Communications in Soil Science and Plant Analysis, vol. 37, no. 11-12, pp. 1639–1649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. S. Johnson, “The effects of gel-forming polyacrylamides on moisture storage in sandy soils,” Journal of the Science of Food and Agriculture, vol. 35, no. 11, pp. 1196–1200, 1984. View at Google Scholar
  30. S. El-Amir, A. M. Helalia, A. Wahdan, and M. E. Shawky, “Effect of two polymers on corn ( Zea mays L.) growth and water economy in sandy soils,” Soil Technology, vol. 4, no. 2, pp. 177–181, 1991. View at Google Scholar · View at Scopus
  31. D. K. C. Dhliwayo, “The effect of a superabsorbent on soil water retention of two soils and on the growth, development, and yield of winter wheat (Triticum aestivum L., cv. Pote),” Zimbabwe Journal of Agricultural Research, vol. 31, no. 1, pp. 53–64, 1993. View at Google Scholar
  32. R. E. A. Sabrah, M. F. Ghoneim, H. M. Abd El-Magid, and R. K. Rabie, “Characteristics and productivity of a sandy soil as influenced by soil conditioners in Saudi Arabia,” Journal of Arid Environments, vol. 24, no. 3, pp. 297–303, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. R. K. Sharma and H. D. Verma, “Effect of irrigation scheduling and other agronomic manipulations on yield and water economy in sugarcane,” Indian Journal of Agronomy, vol. 41, no. 1, pp. 122–126, 1996. View at Google Scholar · View at Scopus
  34. O. A. El-Hady, S. M. Shaaban, and S. A. Wanas, “Hydrophilic polymers for improving the conditioning effect of manures and organic composts. I. Production and water and fertilizers use efficiency for tomato grown in sandy soil,” Egyptian Journal of Soil Science, vol. 46, no. 1, pp. 79–90, 2006. View at Google Scholar
  35. Y.-T. Wang and L. L. Gregg, “Hydrophilic polymers—their response to soil amendments and effect on properties of a soilless potting mix,” Journal of the American Society for Horticultural Science, vol. 115, no. 6, pp. 943–948, 1990. View at Google Scholar
  36. M. O. Torres and A. de Varennes, “Remediation of a sandy soil artificially contaminated with copper using a polyacrylate polymer,” Soil Use and Management, vol. 14, no. 2, pp. 106–110, 1998. View at Google Scholar · View at Scopus
  37. A. de Varennes, A. Balsinhas, and M. J. Carqueja, “Effects of two polyacrylate polymers on the hydrophysical and chemical properties of a sandy soil, and on plant growth and water economy,” Revista de Ciências Agrárias, vol. 20, no. 4, pp. 13–27, 1997. View at Google Scholar
  38. F. T. Wall and S. J. Gill, “Interaction of cupric ions with polyacrylic acid,” The Journal of Physical Chemistry, vol. 58, no. 12, pp. 1128–1130, 1954. View at Google Scholar · View at Scopus
  39. A. de Varennes and M. Q. Torres, “Remediation of a long-term copper-contaminated soil using a polyacrylate polymer,” Soil Use and Management, vol. 15, no. 4, pp. 230–232, 1999. View at Google Scholar · View at Scopus
  40. A. de Varennes, C. Cunha-Queda, and A. R. Ramos, “Polyacrylate polymers as immobilizing agents to aid phytostabilization of two mine soils,” Soil Use and Management, vol. 25, no. 2, pp. 133–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Caravaca, A. Pera, G. Masciandaro, B. Ceccanti, and A. Roldán, “A microcosm approach to assessing the effects of earthworm inoculation and oat cover cropping on CO2 fluxes and biological properties in an amended semiarid soil,” Chemosphere, vol. 59, no. 11, pp. 1625–1631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Gil-Sotres, C. Trasar-Cepeda, M. C. Leirós, and S. Seoane, “Different approaches to evaluating soil quality using biochemical properties,” Soil Biology and Biochemistry, vol. 37, no. 5, pp. 877–887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Nannipieri, E. Kandeler, and P. Ruggiero, “Enzyme activities and microbiological and biochemical processes in soil,” in Enzymes in the Environment: Activity, Ecology and Applications, R. G. Burns and R. P. Dick, Eds., pp. 1–33, Marcel Dekker, New York, NY, USA, 2002. View at Google Scholar
  44. J. L. Moreno, T. Hernandez, and C. Garcia, “Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil,” Biology and Fertility of Soils, vol. 28, no. 3, pp. 230–237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Cao, H. Sun, and H. Yang, “A review: soil enzyme activity and its indication for soil quality,” Chinese Journal of Applied Environmental Biology, vol. 9, no. 1, pp. 105–109, 2003. View at Google Scholar
  46. A. de Varennes and C. Queda, “Application of an insoluble plyacrylate polymer to copper-contaminated soil enhances plant growth and soil quality,” Soil Use and Management, vol. 21, pp. 410–414, 2005. View at Google Scholar
  47. N. G. Juma and M. A. Tabatabai, “Distribution of phosphomonoesterases in soils,” Soil Science, vol. 126, no. 2, pp. 101–108, 1978. View at Google Scholar
  48. E. Kandeler and H. Gerber, “Short-term assay of soil urease activity using colorimetric determination of ammonium,” Biology and Fertility of Soils, vol. 6, no. 1, pp. 68–72, 1988. View at Publisher · View at Google Scholar · View at Scopus
  49. Q. Huang and H. Shindo, “Effects of copper on the activity and kinetics of free and immobilized acid phosphatase,” Soil Biology and Biochemistry, vol. 32, no. 13, pp. 1885–1892, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Tejada, M. T. Hernandez, and C. Garcia, “Application of two organic amendments on soil restoration: effects on the soil biological properties,” Journal of Environmental Quality, vol. 35, no. 4, pp. 1010–1017, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Zhang, L. Huang, T. Luan, J. Jin, and C. Lan, “Structure and function of microbial communities during the early stages of revegetation of barren soils in the vicinity of a Pb/Zn smelter,” Geoderma, vol. 136, no. 3-4, pp. 555–565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. S. D. Cunningham and D. W. Ow, “Promises and prospects of phytoremediation,” Plant Physiology, vol. 110, no. 3, pp. 715–719, 1996. View at Google Scholar · View at Scopus
  53. M. D. Cameron and S. D. Aust, “Degradation of chemicals by reactive radicals produced by cellobiose dehydrogenase from Phanerochaete chrysosporium,” Archives of Biochemistry and Biophysics, vol. 367, no. 1, pp. 115–121, 1999. View at Publisher · View at Google Scholar · View at Scopus