Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2009 (2009), Article ID 929120, 7 pages
http://dx.doi.org/10.1155/2009/929120
Research Article

Plant-Soil Relationships of Bromus tectorum L.: Interactions among Labile Carbon Additions, Soil Invasion Status, and Fertilizer

Exotic and Invasive Weed Research Unit, USDA-ARS, 920 Valley Road, Reno, NV 89512, USA

Received 27 April 2009; Revised 24 June 2009; Accepted 1 September 2009

Academic Editor: Amarilis de Varennes

Copyright © 2009 Robert R. Blank and James A. Young. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. D. Tilman, “Plant dominance along an experimental nutrient gradient,” Ecology, vol. 65, no. 5, pp. 1445–1453, 1984. View at Publisher · View at Google Scholar
  2. R. Aerts and F. Berendse, “The effect of increased nutrient availability on vegetation dynamics in wet heathlands,” Vegetatio, vol. 76, pp. 63–70, 1988. View at Google Scholar
  3. E. F. Redente, J. E. Friedlander, and T. McLendon, “Response of early and late semiarid seral species to nitrogen and phosphorus gradients,” Plant & Soil, vol. 140, no. 1, pp. 127–135, 1992. View at Google Scholar
  4. L. F. Huenneke, S. P. Hamburg, R. Koide, H. A. Mooney, and P. M. Vitousek, “Effects of soil resources on plant invasion and community structure in Californian serpentine grassland,” Ecology, vol. 71, no. 2, pp. 478–491, 1990. View at Google Scholar
  5. Y. Li and M. Norland, “The role of soil fertility in invasion of Brazilian pepper (Schinus terebinthifolius) in Everglades National Park, Florida,” Soil Science, vol. 166, no. 6, pp. 400–405, 2001. View at Publisher · View at Google Scholar
  6. G. Ettershank, J. A. Ettershank, M. Bryant, and W. G. Whitford, “Effects of nitrogen fertilization on primary production in a Chihuahuan Desert ecosystem,” Journal of Arid Environments, vol. 1, pp. 135–139, 1978. View at Google Scholar
  7. D. Tilman and D. Wedin, “Dynamics of nitrogen competition between successional grasses,” Ecology, vol. 72, no. 3, pp. 1038–1049, 1991. View at Google Scholar
  8. M. A. Vinton and I. C. Burke, “Interactions between individual plant species and soil nutrient status in shortgrass steppe,” Ecology, vol. 76, no. 4, pp. 1116–1133, 1995. View at Google Scholar
  9. W. K. Lauenroth, J. L. Dodd, and P. L. Sims, “The effects of water- and nitrogen-induced stresses on plant community structure in a semiarid grassland,” Oecologia, vol. 36, no. 2, pp. 211–222, 1978. View at Publisher · View at Google Scholar
  10. T. McLendon and E. F. Redente, “Effects of nitrogen limitation on species replacement dynamics during early secondary succession on a semiarid sagebrush site,” Oecologia, vol. 91, no. 3, pp. 312–317, 1992. View at Publisher · View at Google Scholar
  11. P. Alpert and J. L. Maron, “Carbon addition as a countermeasure against biological invasion by plants,” Biological Invasions, vol. 2, no. 1, pp. 33–40, 2000. View at Publisher · View at Google Scholar
  12. M. W. Paschke, T. McLendon, and E. F. Redente, “Nitrogen availability and old-field succession in a shortgrass steppe,” Ecosystems, vol. 3, no. 2, pp. 144–158, 2000. View at Publisher · View at Google Scholar
  13. J. A. Young, R. R. Blank, and W. S. Longland, “Nitrogen enrichment-immobilization to control succession in arid land plant communities,” Journal of Arid Land Studies, vol. 5, pp. 57–60, 1995. View at Google Scholar
  14. J. A. Young, J. D. Trent, R. R. Blank, and D. E. Palmquist, “Nitrogen interactions with medusahead (Taeniatherum caput-medusae ssp. asperum) seedbanks,” Weed Science, vol. 46, no. 2, pp. 191–195, 1998. View at Google Scholar
  15. D. M. Blumenthal, N. R. Jordan, and M. P. Russelle, “Soil carbon addition controls weeds and facilitates prairie restoration,” Ecological Applications, vol. 13, no. 3, pp. 605–615, 2003. View at Google Scholar
  16. M. Alexander, Introduction to Soil Microbiology, John Wiley & Sons, New York, NY, USA, 1977.
  17. F. S. Chapin III, “The mineral nutrition of wild plants,” Review of Ecology and Systematics, vol. 11, pp. 233–260, 1980. View at Google Scholar
  18. E. Garnier, G. W. Koch, J. Roy, and H. A. Mooney, “Responses of wild plants to nitrate availability,” Oecologia, vol. 79, no. 4, pp. 542–550, 1989. View at Publisher · View at Google Scholar
  19. J. D. Corbin and C. M. D'Antonio, “Can carbon addition increase competitiveness of native grasses? A case study from California,” Restoration Ecology, vol. 12, no. 1, pp. 36–43, 2004. View at Publisher · View at Google Scholar
  20. T. R. Seastedt and D. C. Hayes, “Factors influencing nitrogen concentrations in soil water in a North American tallgrass prairie,” Soil Biology and Biochemistry, vol. 20, no. 5, pp. 725–729, 1988. View at Google Scholar
  21. K. N. Suding, K. D. LeJeune, and T. R. Seastedt, “Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability,” Oecologia, vol. 141, no. 3, pp. 526–535, 2004. View at Publisher · View at Google Scholar · View at PubMed
  22. P. N. Lowe, W. K. Lauenroth, and I. C. Burke, “Effects of nitrogen availability on the growth of native grasses exotic weeds,” Journal of Range Management, vol. 55, no. 1, pp. 94–98, 2002. View at Google Scholar
  23. C. Yoder and M. Caldwell, “Effects of perennial neighbors and nitrogen pulses on growth and nitrogen uptake by Bromus tectorum,” Plant Ecology, vol. 158, no. 1, pp. 77–84, 2002. View at Publisher · View at Google Scholar
  24. P. M. Vitousek, L. R. Walker, L. D. Whiteaker, D. Mueller-Dombois, and P. A. Matson, “Biological invasion by Myrica faya alters ecosystem development in Hawaii,” Science, vol. 238, no. 4828, pp. 802–804, 1987. View at Google Scholar
  25. R. El-Ghareeb, “Vegetation and soil changes induced by Mesembryanthemum crystallinum L. in a Mediterranean desert ecosystem,” Journal of Arid Environments, vol. 20, no. 3, pp. 321–330, 1991. View at Google Scholar
  26. P. S. Kourtev, J. G. Ehrenfeld, and W. Z. Huang, “Effects of exotic plant species on soil properties in hardwood forests of New Jersey,” Water, Air, and Soil Pollution, vol. 105, no. 1-2, pp. 493–501, 1998. View at Publisher · View at Google Scholar
  27. R. R. Blank and J. A. Young, “Influence of the exotic invasive crucifer, Lepidium latifolium, on soil properties and elemental cycling,” Soil Science, vol. 167, no. 12, pp. 821–829, 2002. View at Publisher · View at Google Scholar
  28. P. A. Knapp, “Cheatgrass (Bromus tectorum L.) dominance in the Great Basin Desert. History, persistence, and influences to human activities,” Global Environmental Change, vol. 6, no. 1, pp. 37–52, 1996. View at Publisher · View at Google Scholar
  29. R. D. Evans, R. Rimer, L. Sperry, and J. Belnap, “Exotic plant invasion alters nitrogen dynamics in an arid grassland,” Ecological Applications, vol. 11, no. 5, pp. 1301–1310, 2001. View at Google Scholar
  30. J. Belnap and S. L. Phillips, “Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion,” Ecological Applications, vol. 11, no. 5, pp. 1261–1275, 2001. View at Google Scholar
  31. J. B. Norton, T. A. Monaco, J. M. Norton, D. A. Johnson, and T. A. Jones, “Soil morphology and organic matter dynamics under cheatgrass and sagebrush-steppe plant communities,” Journal of Arid Environments, vol. 57, no. 4, pp. 445–466, 2004. View at Publisher · View at Google Scholar
  32. B. Von Holle, H. R. Delcourt, and D. Simberloff, “The importance of biological inertia in plant community resistance to invasion,” Journal of Vegetation Science, vol. 14, no. 3, pp. 425–432, 2003. View at Google Scholar
  33. L. G. Bundy and J. J. Meisinger, “Nitrogen availability indices,” in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, R. W. Weaver, S. Angle, P. Bottomley et al., Eds., pp. 951–984, Soil Science Society of America, Madison, Wis, USA, 1994. View at Google Scholar
  34. A. Mubarak and R. A. Olsen, “Immiscible displacement of the soil solution by centrifugation,” Soil Science Society of America Journal, vol. 40, pp. 329–331, 1976. View at Google Scholar
  35. A. Frostegård and E. Bååth, “The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil,” Biology and Fertility of Soils, vol. 22, no. 1-2, pp. 59–65, 1996. View at Publisher · View at Google Scholar
  36. SAS Institute, Statistical Analysis Software. Version 7, SAS Institute, Cary, NC, USA, 1996.
  37. M. Rejmánek and D. M. Richardson, “What attributes make some plant species more invasive?” Ecology, vol. 77, no. 6, pp. 1655–1661, 1996. View at Google Scholar
  38. R. N. Mack, “Predicting the identity and fate of plant invaders: emergent and emerging approaches,” Biological Conservation, vol. 78, no. 1-2, pp. 107–121, 1996. View at Publisher · View at Google Scholar
  39. E. Grotkopp and M. Rejmánek, “High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms,” American Journal of Botany, vol. 94, no. 4, pp. 526–532, 2007. View at Publisher · View at Google Scholar
  40. M. B. Mazzola, K. G. Allcock, J. C. Chambers et al., “Effects of nitrogen availability and cheatgrass competition on the establishment of Vavilov Siberian wheatgrass,” Rangeland Ecology and Management, vol. 61, no. 5, pp. 475–484, 2008. View at Publisher · View at Google Scholar
  41. P. R. Premi and A. H. Cornfield, “Effects of copper, zinc, and chromium on immobilization and subsequent re-mobilization of nitrogen during incubation of soil treated with sucrose,” Geoderma, vol. 3, no. 3, pp. 233–237, 1970. View at Google Scholar
  42. S. Jonasson, A. Michelsen, I. K. Schmidt, E. V. Nielsen, and T. V. Callaghan, “Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake,” Oecologia, vol. 106, no. 4, pp. 507–515, 1996. View at Google Scholar
  43. G. M. Shaban, “Further studies on Egyptian soil fungi: succession of sugar and osmophilic fungi in soil amended with five organic substrates,” Mycopathologia, vol. 136, no. 1, pp. 33–40, 1996. View at Google Scholar
  44. A. V. Sturz and B. R. Christie, “Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria,” Soil and Tillage Research, vol. 72, no. 2, pp. 107–123, 2003. View at Publisher · View at Google Scholar
  45. J. W. Paul, E. G. Beauchamp, and J. T. Trevors, “Acetate, propionate, butyrate, glucose, and sucrose as carbon sources for denitrifying bacteria in soil,” Canadian Journal of Microbiology, vol. 35, pp. 754–759, 1989. View at Google Scholar
  46. D. N. Rao and D. S. Mikkelsen, “Effect of acetic, propionic, and butyric acids on young rice seedlings growth,” Agronomy Journal, vol. 69, pp. 923–928, 1977. View at Google Scholar
  47. H. Marschner, Mineral Nutrition of Higher Plants, Academic Press, New York, NY, USA, 1995.
  48. J. G. Ehrenfeld, “Effects of exotic plant invasions on soil nutrient cycling processes,” Ecosystems, vol. 6, no. 6, pp. 503–523, 2003. View at Publisher · View at Google Scholar
  49. S. O. Link, H. Bolton Jr., M. E. Thiede, and W. H. Rickard, “Responses of downy brome to nitrogen and water,” Journal of Range Management, vol. 48, pp. 290–297, 1995. View at Google Scholar
  50. O. Vaartaja, “Responses of Pythium ultimum and other fungi to a soil extract containing an inhibitor with low molecular weight,” Phytopathology, vol. 67, pp. 67–71, 1977. View at Google Scholar