Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2011, Article ID 762173, 9 pages
http://dx.doi.org/10.1155/2011/762173
Research Article

In Situ Generated Colloid Transport of Cu and Zn in Reclaimed Mine Soil Profiles Associated with Biosolids Application

1ARS, USDA, 2611 W. Lucas St, Florence, SC 29501, USA
2N122 Ag Science North, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA

Received 5 October 2010; Accepted 12 January 2011

Academic Editor: Silvana I. Torri

Copyright © 2011 Jarrod O. Miller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Areas reclaimed for agricultural uses following coal mining often receive biosolids applications to increase organic matter and fertility. Transport of heavy metals within these soils may be enhanced by the additional presence of biosolids colloids. Intact monoliths from reclaimed and undisturbed soils in Virginia and Kentucky were leached to observe Cu and Zn mobility with and without biosolids application. Transport of Cu and Zn was observed in both solution and colloid associated phases in reclaimed and undisturbed forest soils, where the presence of unweathered spoil material and biosolids amendments contributed to higher metal release in solution fractions. Up to 81% of mobile Cu was associated with the colloid fraction, particularly when gibbsite was present, while only up to 18% of mobile Zn was associated with the colloid fraction. The colloid bound Cu was exchangeable by ammonium acetate, suggesting that it will release into groundwater resources.