Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2011 (2011), Article ID 847940, 10 pages
http://dx.doi.org/10.1155/2011/847940
Research Article

Biological and Physicochemical Parameters Related to the Nitrogen Cycle in the Rhizospheric Soil of Native Potato (Solanum phureja) Crops of Colombia

Laboratorio de Microbiología Agrícola, Instituto de Biotecnología, Universidad Nacional de Colombia, Avenida carrera 30 no 45-03, A.A 14-490, Bogotá D.C., Colombia

Received 24 November 2010; Accepted 19 May 2011

Academic Editor: Paul Voroney

Copyright © 2011 Nathalia Flórez-Zapata and Daniel Uribe-Vélez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Espinal, H. Martínez, N. Pinzón, and C. Barrios, “La cadena de la papa en colombia una mirada global de su estructura y dinamica 1991–2005,” Documento de Trabajo no. 54, Ministerio de Agricultura y Desarrollo Rural Observatorio Agrocadenas, Bogotá, Colombia, 2005. View at Google Scholar
  2. C. E. Ñústez, “La papa criolla (Solanum phureja): un cultivo para destacar en Colombia,” Boletín de la Papa, vol. 3, no. 25, 2001. View at Google Scholar
  3. C. Diazgranados and A. Chaparro-Giraldo, “Desarrollo de un sistema de regeneración en papa criolla Solanum phureja Juz. et. Buk. Var. yema de huevo clon 1,” Agronomía Colombiana, vol. 25, pp. 7–15, 2007. View at Google Scholar
  4. P. D. Porras, “La papa en Colombia: desarrollo de una Cadena agroalimentaria estratégica,” Revista Papa, vol. 20, pp. 5–29, 1999. View at Google Scholar
  5. R. L. Parfitt, “Allophane and imogolite: role in soil biogeochemical processes,” Clay Minerals, vol. 44, no. 1, pp. 135–155, 2009. View at Publisher · View at Google Scholar
  6. H. Castro, “Balance y prospectiva de la investigación en el campo de la fertilización para el sistema de producción de papa en Colombia,” in Proceedings of the 1st Taller Nacional sobre suelos, fisiología y nutrición vegetal en el cultivo de la papa, Bogotá, Colombia, February 2005.
  7. H. J. Villamil, “Fisiología de la nutrición en papa,” in Proceedings of the 1st Taller Nacional Sobre Suelos, Fisiología y Nutrición Vegetal en el Cultivo de la Papa, Bogotá, Colombia, February 2005.
  8. H. Ruiz, “Inventario de la oferta tecnológica para la fertilización en el cultivo de la papa en Colombia,” in Proceedings of the 1st Taller Nacional Sobre Suelos, Fisiología y Nutrición Vegetal en el Cultivo de la Papa, Bogotá, Colombia, February 2005.
  9. H. Villareal, P. Porras, A. Santa, J. Logoeyte, and D. Muñoz, “Costos de producción de papa en las principales zonas productoras de Colombia,” 2007, http://www.fedepapa.org.co/files/estadistica/estudio.pdf.
  10. C. M. Giletto, H. E. Echeverria, and V. Sadras, “Nitrogen fertilization of potato in the southern pampas,” Ciencia del Suelo, vol. 21, no. 2, pp. 44–51, 2003. View at Google Scholar
  11. J. A. Saluzzo, H. E. Echeverría, F. H. Andrade, and M. Huarte, “Nitrogen nutrition of potato cultivars differing in maturity,” Journal of Agronomy and Crop Science, vol. 183, no. 3, pp. 157–165, 1999. View at Publisher · View at Google Scholar
  12. G. E. Kleinkopf, D. T. Westermann, and R. B. Dwelle, “Dry matter production and nitrogen utilization by six potato cultivars,” Agronomy Journal, vol. 73, pp. 799–802, 1981. View at Google Scholar
  13. R. V. Rourke, “Soil solution levels of nitrate nitrogen in a potato-buckwheat rotation,” American Potato Journal, vol. 62, no. 1, pp. 1–8, 1985. View at Publisher · View at Google Scholar
  14. G. A. Porter and J. A. Sisson, “Petiole nitrate content of Maine-grown Russet Burbank and Shepody potatoes in response to varying nitrogen rate,” American Potato Journal, vol. 68, no. 8, pp. 493–505, 1991. View at Publisher · View at Google Scholar
  15. J. N. Galloway, A. R. Townsend, J. W. Erisman et al., “Transformation of the nitrogen cycle: recent trends, questions, and potential solutions,” Science, vol. 320, no. 5878, pp. 889–892, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. V. Smil, “Global population and the nitrogen cycle,” Scientific American, vol. 277, pp. 76–81, 1997. View at Google Scholar
  17. P. M. Vitousek, J. D. Aber, R. W. Howarth et al., “Human alteration of the global nitrogen cycle: sources and consequences,” Ecological Applications, vol. 7, no. 3, pp. 737–750, 1997. View at Google Scholar
  18. T. Rosswall, “The internal nitrogen cycle between microorganisms, vegetation and soil,” Ecological Bulletins, pp. 157–167, 1976. View at Google Scholar
  19. L. E. Jackson, M. Burger, and T. R. Cavagnaro, “Roots, nitrogen transformations, and ecosystem services,” Annual Review of Plant Biology, vol. 59, pp. 341–363, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. R. J. Rennie, “A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils,” Canadian Journal of Microbiology, vol. 27, no. 1, pp. 8–14, 1981. View at Google Scholar
  21. J. Pochon and P. Tardieux, Techniques d'Analyse en Microbiologie du Sol, Éditions de la Tourelle, Saint-Mandé, France, 1962.
  22. H. J. Bach and J. C. Munch, “Identification of bacterial sources of soil peptidases,” Biology and Fertility of Soils, vol. 31, no. 3-4, pp. 219–224, 2000. View at Google Scholar
  23. E. Amora-Lazcano, M. M. Vázquez, and R. Azcón, “Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi,” Biology and Fertility of Soils, vol. 27, no. 1, pp. 65–70, 1998. View at Publisher · View at Google Scholar
  24. M. Alexander and F. E. Clark, “Nitrifying bacteria,” in Methods of Soil Analysis, M. Alexander, F. E. Clark, and C. A. Black, Eds., part 2, pp. 1477–1483, American Society of Agronomy, Madison, Wis, USA, 1965. View at Google Scholar
  25. Y. Horiba, S. T. Khan, and A. Hiraishi, “Characterization of the microbial community and culturable denitrifying bacteria in a solid-phase denitrification process using poly ( -caprolactone) as the carbon and energy source,” Microbes and Environments, vol. 20, pp. 25–33, 2005. View at Google Scholar
  26. M. H. McCrady, “Tables for rapid interpretation of fermentation tube results,” Public Health Journal Toronto, vol. 9, pp. 201–220, 1918. View at Google Scholar
  27. J. N. Ladd and J. H. A. Butler, “Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates,” Soil Biology and Biochemistry, vol. 4, no. 1, pp. 19–30, 1972. View at Google Scholar · View at Scopus
  28. R. W. F. Hardy, R. D. Holsten, E. K. Jackson, and R. C. Burns, “The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation,” Plant Physiology, vol. 43, pp. 1185–1207, 1968. View at Google Scholar
  29. W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal of the American statistical Association, vol. 47, pp. 583–621, 1952. View at Google Scholar
  30. StataCorp, Stata Statistical Software: Release 9, StataCorp LP, College Station, Tex, USA, 2005.
  31. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2008, ISBN 3-900051-07-0.
  32. P. Mäder, A. Fließbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli, “Soil fertility and biodiversity in organic farming,” Science, vol. 296, no. 5573, pp. 1694–1697, 2002. View at Publisher · View at Google Scholar · View at PubMed
  33. L. R. Bulluck, M. Brosius, G. K. Evanylo, and J. B. Ristaino, “Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms,” Applied Soil Ecology, vol. 19, no. 2, pp. 147–160, 2002. View at Publisher · View at Google Scholar
  34. A. S. F. Araújo, V. B. Santos, and R. T. R. Monteiro, “Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state, Brazil,” European Journal of Soil Biology, vol. 44, no. 2, pp. 225–230, 2008. View at Publisher · View at Google Scholar
  35. D. D. Myrold, “Transformations of nitrogen,” in Principles and Applications of Soil Microbiology, D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, and D. A. Zuberer, Eds., pp. 333–372, Prentice Hall, Englewood Cliffs, NJ, USA, 2005. View at Google Scholar
  36. J. Howe and M. Wagner, “The effect of papermill wastewater and organic amendments on sodium accumulation by potted cottonwoods,” Environmental Pollution, vol. 92, no. 2, pp. 113–118, 1996. View at Publisher · View at Google Scholar
  37. G. P. Sparling, T. Graham Shepherd, and H. A. Kettles, “Changes in soil organic C, microbial C and aggregate stability under continuous maize and cereal cropping, and after restoration to pasture in soils from the Manawatu region, New Zealand,” Soil and Tillage Research, vol. 24, no. 3, pp. 225–241, 1992. View at Google Scholar
  38. F. Houwaard, “Influence of ammonium and nitrate nitrogen on nitrogenase activity of pea plants as affected by light intensity and sugar addition,” Plant and Soil, vol. 54, no. 2, pp. 271–282, 1980. View at Publisher · View at Google Scholar
  39. R. Knowles and D. Denike, “Effect of ammonium-, nitrite- and nitrate nitrogen on anaerobic nitrogenase activity in soil,” Soil Biology and Biochemistry, vol. 6, no. 6, pp. 353–358, 1974. View at Google Scholar
  40. V. Rajaramamohan-Rao, “Nitrogen fixation as influenced by moisture content, ammonium sulphate and organic sources in a paddy soil,” Soil Biology and Biochemistry, vol. 8, no. 5, pp. 445–448, 1976. View at Google Scholar
  41. D. Kleiner, “Ammonium uptake and metabolism by nitrogen fixing bacteria,” Archives of Microbiology, vol. 111, no. 1-2, pp. 85–91, 1976. View at Google Scholar
  42. A. Hartmann and R. H. Burris, “Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum,” Journal of Bacteriology, vol. 169, no. 3, pp. 944–948, 1987. View at Google Scholar
  43. R. L. Smith, C. Van Baalen, and F. R. Tabita, “Alteration of the Fe protein of nitrogenase by oxygen in the Cyanobacterium anabaena sp. strain CA,” Journal of Bacteriology, vol. 169, no. 6, pp. 2537–2542, 1987. View at Google Scholar
  44. D. A. Zuberer, “Biological dinitrogen fixation: introduction and nonsymbiotic,” in Principles and Applications of Soil Microbiology, D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, and D. A. Zuberer, Eds., pp. 373–404, Prentice Hall, Englewood Cliffs, NJ, USA, 2005. View at Google Scholar
  45. S. J. Ferguson, “Nitrogen cycle enzymology,” Current Opinion in Chemical Biology, vol. 2, no. 2, pp. 182–193, 1998. View at Google Scholar
  46. K. C. Marshall, “Clay mineralogy in relation to survival of soil bacteria,” Annual Review of Phytopathology, vol. 13, pp. 357–373, 1975. View at Google Scholar
  47. H. Arslan, G. Güleryüz, and S. Kirmizi, “Nitrogen mineralisation in the soil of indigenous oak and pine plantation forests in a Mediterranean environment,” European Journal of Soil Biology, vol. 46, no. 1, pp. 11–17, 2010. View at Publisher · View at Google Scholar
  48. F. Gastal and G. Lemaire, “N uptake and distribution in crops: An agronomical and ecophysiological perspective,” Journal of Experimental Botany, vol. 53, no. 370, pp. 789–799, 2002. View at Google Scholar
  49. L. Böhme and F. Böhme, “Soil microbiological and biochemical properties affected by plant growth and different long-term fertilisation,” European Journal of Soil Biology, vol. 42, no. 1, pp. 1–12, 2006. View at Publisher · View at Google Scholar
  50. J. P. Schimel and J. Bennett, “Nitrogen mineralization: challenges of a changing paradigm,” Ecology, vol. 85, no. 3, pp. 591–602, 2004. View at Google Scholar
  51. M. M. Fuka, M. Engel, A. Gattinger et al., “Factors influencing variability of proteolytic genes and activities in arable soils,” Soil Biology and Biochemistry, vol. 40, no. 7, pp. 1646–1653, 2008. View at Publisher · View at Google Scholar
  52. T. Kunito, K. Saeki, S. Goto, H. Hayashi, H. Oyaizu, and S. Matsumoto, “Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils,” Bioresource Technology, vol. 79, no. 2, pp. 135–146, 2001. View at Publisher · View at Google Scholar
  53. S. Saha, K. A. Gopinath, B. L. Mina, and H. S. Gupta, “Influence of continuous application of inorganic nutrients to a Maize-Wheat rotation on soil enzyme activity and grain quality in a rainfed Indian soil,” European Journal of Soil Biology, vol. 44, no. 5-6, pp. 521–531, 2008. View at Publisher · View at Google Scholar