Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2011, Article ID 925462, 9 pages
http://dx.doi.org/10.1155/2011/925462
Research Article

Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

1Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA
2Department of Crop and Soil Sciences and Puyallup Research and Extension Center, Washington State University, 2606 West Pioneer Way, Puyallup, WA 98371, USA

Received 15 December 2010; Revised 19 February 2011; Accepted 23 February 2011

Academic Editor: Rodrigo Studart Corrêa

Copyright © 2011 Richard T. Koenig et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. A. Barbarick, J. A. Ippolito, and D. G. Westfall, “Distribution and mineralization of biosolids nitrogen applied to dryland wheat,” Journal of Environmental Quality, vol. 25, no. 4, pp. 796–801, 1996. View at Google Scholar · View at Scopus
  2. C. G. Cogger, T. A. Forge, and G. H. Neilsen, “Biosolids recycling: nitrogen management and soil ecology,” Canadian Journal of Soil Science, vol. 86, no. 4, pp. 613–620, 2006. View at Google Scholar · View at Scopus
  3. D. M. Sullivan, A. I. Bary, C. G. Cogger, and T. E. Shearin, “Predicting biosolids application rates for dryland wheat across a range of Northwest climate zones,” Communications in Soil Science and Plant Analysis, vol. 40, no. 11-12, pp. 1770–1789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. Barbarick, J. A. Ippolito, and D. G. Westfall, “Biosolids effect on phosphorus, copper, zinc, nickel, and molybdenum concentrations in dryland wheat,” Journal of Environmental Quality, vol. 24, no. 4, pp. 608–611, 1995. View at Google Scholar · View at Scopus
  5. C. G. Cogger, D. M. Sullivan, A. I. Bary, and J. A. Kropf, “Matching plant-available nitrogen from biosolids with dryland wheat needs,” Journal of Production Agriculture, vol. 11, no. 1, pp. 41–47, 1998. View at Google Scholar · View at Scopus
  6. D. K. McCool, D. R. Huggins, K. E. Saxton, and A. C. Kennedy, “Factors affecting agricultural sustainability in the Pacific Northwest, USA: an overview,” in Proceedings of the 10th International Soil Conservation Organization Meeting on Sustaining the Global Farm Symposium, D. E. Stott, R. H. Mohtar, and G.C. Steinhardt, Eds., pp. 255–260, Purdue University, May 1999.
  7. A. C. S. Rao, J. L. Smith, V. K. Jandhyala, R. I. Papendick, and J. F. Parr, “Cultivar and climatic effects on the protein content of soft white winter wheat,” Agronomy Journal, vol. 85, no. 5, pp. 1023–1028, 1993. View at Google Scholar · View at Scopus
  8. K. A. Barbarick, J. A. Ippolito, and J. McDaniel, “Fifteen years of wheat yield, N uptake, and soil nitrate-N dynamics in a biosolids-amended agroecosystem,” Agriculture, Ecosystems and Environment, vol. 139, no. 1-2, pp. 116–120, 2010. View at Publisher · View at Google Scholar
  9. R. Koenig, Eastern Washington Nutrient Management Guide: Dryland Winter Wheat, Washington State University Extension Bulletin, no. 1987, Washington State University Extension, Pullman, Wash, USA, 2005, http://cru.cahe.wsu.edu/CEPublications/EB1987/EB1987.pdf.
  10. J. T. Gilmour, C. G. Cogger, L. W. Jacobs, G. K. Evanylo, and D. M. Sullivan, “Decomposition and plant-available nitrogen in biosolids: laboratory studies, field studies, and computer simulation,” Journal of Environmental Quality, vol. 32, no. 4, pp. 1498–1507, 2003. View at Google Scholar · View at Scopus
  11. C. G. Cogger, A. I. Bary, and E. A. Myhre, “Estimating nitrogen availability of heat-dried biosolids,” Applied and Environmental Soil Science. In press.
  12. S. O. Guy and R. M. Gareau, “Crop rotation, residue durability, and nitrogen fertilizer effects on winter wheat production,” Journal of Production Agriculture, vol. 11, no. 4, pp. 457–461, 1998. View at Google Scholar · View at Scopus
  13. K. A. Barbarick and J. A. Ippolito, “Nutrient assessment of a dryland wheat agroecosystem after 12 years of biosolids applications,” Agronomy Journal, vol. 99, no. 3, pp. 715–722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. F. van Herwaarden, G. D. Farquhar, J. F. Angus, R. A. Richard, and G. N. Howe, “'Haying-off', the negative grain yield response of dryland wheat to nitrogen fertiliser. I. Biomass, grain yield, and water use,” Australian Journal of Agricultural Research, vol. 49, no. 7, pp. 1067–1081, 1998. View at Google Scholar · View at Scopus
  15. G. L. Terman, R. E. Ramig, A. F. Dreier, and R. A. Olson, “Yield-protein relationships in wheat grain as affected by nitrogen and water,” Agronomy Journal, vol. 61, pp. 755–759, 1969. View at Google Scholar
  16. V. L. Cochran, R. L. Warner, and R. I. Papendick, “Effect of N depth and application rate on yield, protein content and quality of winter wheat,” Agronomy Journal, vol. 70, pp. 964–968, 1978. View at Google Scholar
  17. K. E. Sowers, B. C. Miller, and W. L. Pan, “Optimizing yield and grain protein in soft white winter wheat with split nitrogen applications,” Agronomy Journal, vol. 86, no. 6, pp. 1020–1025, 1994. View at Google Scholar · View at Scopus
  18. C. G. Cogger and D. M. Sullivan, Worksheet for Calculating Biosolids Application Rates in Agriculture, Pacific Northwest Extension Bulletin, no. 511, Washington State University Extension, Pullman, Wash, USA, 2007, http://cru.cahe.wsu.edu/CEPublications/pnw0511e/pnw0511e.pdf .