Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012, Article ID 274903, 12 pages
Research Article

The Effects of Spectral Pretreatments on Chemometric Analyses of Soil Profiles Using Laboratory Imaging Spectroscopy

1Environmental Remote Sensing and Geoinformatics, Trier University, 54286 Trier, Germany
2Lehrstuhl für Bodenkunde, Technische Universität München, 85350 Freising-Weihenstephan, Germany

Received 17 February 2012; Revised 11 May 2012; Accepted 18 September 2012

Academic Editor: Raphael Viscarra Rossel

Copyright © 2012 Henning Buddenbaum and Markus Steffens. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Laboratory imaging spectroscopy can be used to explore physical and chemical variations in soil profiles on a submillimetre scale. We used a hyperspectral scanner in the 400 to 1000 nm spectral range mounted in a laboratory frame to record images of two soil cores. Samples from these cores were chemically analyzed, and spectra of the sampled regions were used to train chemometric PLS regression models. With these models detailed maps of the elemental concentrations in the soil cores could be produced. Eight different spectral pretreatments were applied to the sample spectra and to the resulting images in order to explore the influence of these pre-treatments on the estimation of elemental concentrations. We found that spectral preprocessing has a minor influence on chemometry results when powerful regression algorithms like PLSR are used.