Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 430347, 17 pages
http://dx.doi.org/10.1155/2012/430347
Research Article

Digital Mapping of Soil Drainage Classes Using Multitemporal RADARSAT-1 and ASTER Images and Soil Survey Data

1Pedology and Precision Agriculture Laboratories, Agriculture and Agri-Food Canada, 979 de Bourgogne Avenue, Local No. 140, Quebec City, QC, Canada G1W 2L4
2Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 Rue de la Couronne, Quebec City, QC, Canada G1K 9A9

Received 26 July 2011; Revised 14 October 2011; Accepted 24 October 2011

Academic Editor: Keith Smettem

Copyright © 2012 Mohamed Abou Niang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Bartelli, “Interpreting soils data,” in Planning the Uses and Management of Land, M. T. Beatty, G. W. Petersen, and L. D. Swindale, Eds., pp. 91–116, American Society of Agronomy, Madison, Wis, USA, 1979. View at Google Scholar
  2. T. Hengl, A Practical Guide to Geostatistical Mapping, University of Amsterdam, 2nd edition, 2009.
  3. A. B. McBratney, M. L. Mendonça Santos, and B. Minasny, “On digital soil mapping,” Geoderma, vol. 117, no. 1-2, pp. 3–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. P. E. Gessler, I. D. Moore, N. J. McKenzie, and P. J. Ryan, “Soil-landscape modelling and spatial prediction of soil attributes,” International Journal of Geographical Information Systems, vol. 9, no. 4, pp. 421–432, 1995. View at Google Scholar · View at Scopus
  5. P. Campling, A. Gobin, and J. Feyen, “Logistic modeling to spatially predict the probability of soil drainage classes,” Soil Science Society of America Journal, vol. 66, no. 4, pp. 1390–1401, 2002. View at Google Scholar · View at Scopus
  6. F. Bonn and R. Escadafal, “Précis de télédétection,” in Applications Thématiques, F. Bonn, Ed., vol. 2, pp. 91–135, Presses de l’Université du Québec/AUPELF, Quebec, Canada, 1996. View at Google Scholar
  7. N. M. Mattikalli, “Soil color modeling for the visible and near-infrared bands of landsat sensors using laboratory spectral measurements,” Remote Sensing of Environment, vol. 59, no. 1, pp. 14–28, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Science Society of America Journal, vol. 66, no. 3, pp. 722–727, 2002. View at Google Scholar · View at Scopus
  9. A. R. Huete and R. Escadafal, “Assessment of biophysical soil properties through spectral decomposition techniques,” Remote Sensing of Environment, vol. 35, no. 2-3, pp. 149–159, 1991. View at Google Scholar · View at Scopus
  10. J. Liu, J. R. Miller, D. Haboudane, E. Pattey, and M. C. Nolin, “Spatial patterns in seasonal CASI image data products and potential application for management zone delineation for precision agriculture,” in Proceedings of the 25th Canadian Remote Sensing Conference, Quebec, Canada, October 2003.
  11. F. T. Ulaby, P. C. Dubois, and J. Van Zyl, “Radar mapping of surface soil moisture,” Journal of Hydrology, vol. 184, no. 1-2, pp. 57–84, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. H. McNairn and B. Brisco, “The application of C-band polarimetric SAR for agriculture: a review,” Canadian Journal of Remote Sensing, vol. 30, no. 3, pp. 525–542, 2004. View at Google Scholar · View at Scopus
  13. J. J. van der Sanden, “Anticipated applications potential of RADARSAT-2 data,” Canadian Journal of Remote Sensing, vol. 30, no. 3, pp. 369–379, 2004. View at Google Scholar · View at Scopus
  14. A. M. Smith, P. Eddy, and J. Bugden, “Delineating within-field management zones using multi-temporal, multi-polarized airborne SAR imagery,” in Proceedings of the 25th Canadian Remote Sensing Conference, Quebec, Canada, October 2003.
  15. E. Pottier, J.-S. Lee, and L. Ferro-Famil, Polsarpro V3.0—Lecture Notes, Advanced Concepts, 2006.
  16. M. A. Niang, M. C. Nolin, and M. Bernier, “Potential of C-band multi-polarized and polarimetric SAR data for soil drainage classification and mapping,” in Geoscience and Remote Sensing : New Achievements, P. Imperator and D. Riccio, Eds., pp. 163–176, InTech, Vienna, Austria, 2010. View at Google Scholar
  17. A. T. Cialella, R. C. Dubayah, W. T. Lawrence, and E. R. Levine, “Predicting soil drainage class using remotely sensed and digital elevation data,” Photogrammetric Engineering and Remote Sensing, vol. 63, no. 2, pp. 171–178, 1997. View at Google Scholar · View at Scopus
  18. K. S. Lee, G. B. Lee, and E. J. Tyler, “Thematic Mapper and digital elevation modeling of soil characteristics in hilly terrain,” Soil Science Society of America Journal, vol. 52, no. 4, pp. 1104–1107, 1988. View at Google Scholar · View at Scopus
  19. J. Liu, E. Pattey, M. C. Nolin, J. R. Miller, and O. Ka, “Mapping within-field soil drainage using high resolution remote and proximal sensing data,” Geoderma, vol. 143, no. 3-4, pp. 261–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. Lee, G. B. Lee, and E. J. Tyler, “Determination of soil characteristics from Thematic Mapper data of a cropped organic-inorganic soil landscape,” Soil Science Society of America Journal, vol. 52, no. 4, pp. 1100–1104, 1988. View at Google Scholar · View at Scopus
  21. E. R. Levine, R. G. Knox, and W. T. Lawrence, “Relationships between soil properties and vegetation at the Northern Experimental Forest, Howland, Maine,” Remote Sensing of Environment, vol. 47, no. 2, pp. 231–241, 1994. View at Google Scholar · View at Scopus
  22. T. V. Korolyuk and H. V. Shcherbenko, “Compiling soil maps on the basis of remotely-sensed data digital processing: soil interpretation,” International Journal of Remote Sensing, vol. 15, no. 7, pp. 1379–1400, 1994. View at Google Scholar · View at Scopus
  23. L. Lamontagne, A. Martin, and M. C. Nolin, Étude Pédologique du Bassin Versant du Bras d’Henri, Laboratoires de pédologie et d’agriculture de précision, Centre de recherche et de développement sur les sols et les grandes cultures, Service national d’information sur les terres et les eaux, Direction Générale de la Recherche, Agriculture et Agroalimentaire Canada, Quebec, Canada, 2010.
  24. M. C. Nolin, L. Lamontagne, and J. C. Dubé, “Cadre méthodologique d'une étude détaillée des sols et son application en terrain plat,” Bulletin Technique 1994-4F, Direction Générale de la Recherche. AAC. Ste-Foy, Quebec, Canada, 1994. View at Google Scholar
  25. J. H. Day, Ed., The Canada Soil Information System (CanSIS), Manual for Describing Soil in the Field, 1982.
  26. J. Miller and J. Franklin, “Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence,” Ecological Modelling, vol. 157, no. 2-3, pp. 227–247, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. F. M. Henderson and J. A. Lewis, Principles and Applications of Imaging Radar, Manual of Remote Sensing, vol. 2, John Wiley & Sons, New York, NY, USA, 3rd edition, 1998.
  28. W. Wagner, C. Pathe, M. Doubkova et al., “Temporal stability of soil moisture and radar backscatter observed by the Advanced Synthetic Aperture Radar (ASAR),” Sensors, vol. 8, no. 2, pp. 1174–1197, 2008. View at Google Scholar · View at Scopus
  29. G. C. Topp, Y. T. Galganov, B. C. Ball, and M. R. Carter, “Soil water desorption curves,” in Soil Sampling and Methods of Analysis, M. R. Carter, Ed., pp. 569–580, Lewis Publishers, Boca Raton, Fla, USA, 1993. View at Google Scholar
  30. J. L. B. Culley, “Density and compressibility,” in Soil Sampling and Methods of Analysis, M. R. Carter, Ed., pp. 529–540, Lewis Publishers, Boca Raton, Fla, USA, 1993. View at Google Scholar
  31. F. Baret and G. Guyot, “Potentials and limits of vegetation indices for LAI and APAR assessment,” Remote Sensing of Environment, vol. 35, no. 2-3, pp. 161–173, 1991. View at Google Scholar · View at Scopus
  32. A. Bannari, A. R. Huete, D. Morin, and F. Zagolski, “Effects of the colour and brightness of the Sun on vegetation indices de vegetation,” International Journal of Remote Sensing, vol. 17, no. 10, pp. 1885–1906, 1996. View at Google Scholar · View at Scopus
  33. M. T. Yilmaz, E. R. Hunt Jr., L. D. Goins, S. L. Ustin, V. C. Vanderbilt, and T. J. Jackson, “Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery,” Remote Sensing of Environment, vol. 112, no. 2, pp. 350–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation leaf water content using reflectance in the optical domain,” Remote Sensing of Environment, vol. 77, no. 1, pp. 22–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6s: an overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp. 675–686, 1997. View at Google Scholar · View at Scopus
  36. W. Peng, D. B. Wheeler, J. C. Bell, and M. G. Krusemark, “Delineating patterns of soil drainage class on bare soils using remote sensing analyses,” Geoderma, vol. 115, no. 3-4, pp. 261–279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Hengl, G. B. M. Heuvelink, and A. Stein, “A generic framework for spatial prediction of soil variables based on regression-kriging,” Geoderma, vol. 120, no. 1-2, pp. 75–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Bell, R. L. Cunningham, and M. W. Havens, “Soil drainage class probability mapping using a soil-landscape model,” Soil Science Society of America Journal, vol. 58, no. 2, pp. 464–470, 1994. View at Google Scholar · View at Scopus
  39. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1963. View at Google Scholar
  40. M. Xu, P. Watanachaturaporn, P. K. Varshney, and M. K. Arora, “Decision tree regression for soft classification of remote sensing data,” Remote Sensing of Environment, vol. 97, no. 3, pp. 322–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977. View at Google Scholar · View at Scopus
  42. P. Legendre and L. Legendre, Numerical Ecology, Elsevier, Amsterdam, The Netherlands, 2nd edition, 1998.
  43. V. Di Gesù and V. Starovoitov, “Distance-based functions for image comparison,” Pattern Recognition Letters, vol. 20, no. 2, pp. 207–214, 1999. View at Google Scholar · View at Scopus