Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 506951, 7 pages
http://dx.doi.org/10.1155/2012/506951
Research Article

Effect of Land Application of Phosphorus-Saturated Gypsum on Soil Phosphorus in a Laboratory Incubation

1USDA, National Institute of Food and Agriculture, Waterfront Centre, Washington, DC 20024, USA
2Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
3Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
4USDA, Agricultural Research Service, Bldg. 3702, Curtin Road, University Park, PA 16802, USA

Received 6 July 2011; Revised 11 October 2011; Accepted 29 October 2011

Academic Editor: Artemi Cerda

Copyright © 2011 Karen L. Grubb et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Obama, Executive Order: Chesapeake Bay Protection and Restoration, 2009.
  2. CBPO, “Sources of phosphorus loads to the Bay,” 2009, http://www.chesapeakebay.net/status_phosphorusloads.aspx?menuitem=19801.
  3. D. H. Pote, T. C. Daniel, A. N. Sharpley, P. A. Moore, D. R. Edwards, and D. J. Nichols, “Relating extractable soil phosphorus to phosphorus losses in runoff,” Soil Science Society of America Journal, vol. 60, no. 3, pp. 855–859, 1996. View at Google Scholar · View at Scopus
  4. J. T. Sims, R. R. Simard, and B. C. Joern, “Phosphorus loss in agricultural drainage: historical perspective and current research,” Journal of Environmental Quality, vol. 27, no. 2, pp. 277–293, 1998. View at Google Scholar · View at Scopus
  5. P. A. Vadas, M. S. Srinivasan, P. J. A. Kleinman, J. P. Schmidt, and A. L. Allen, “Hydrology and groundwater nutrient concentrations in a ditch-drained agroecosystem,” Journal of Soil and Water Conservation, vol. 62, no. 4, pp. 178–188, 2007. View at Google Scholar · View at Scopus
  6. J. W. Leader, E. J. Dunne, and K. R. Reddy, “Phosphorus sorbing materials: sorption dynamics and physicochemical characteristics,” Journal of Environmental Quality, vol. 37, no. 1, pp. 174–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. J. Penn, R. B. Bryant, P. J. A. Kleinman, and A. L. Allen, “Removing dissolved phosphorus from drainage ditch water with phosphorus sorbing materials,” Journal of Soil and Water Conservation, vol. 62, no. 4, pp. 269–276, 2007. View at Google Scholar · View at Scopus
  8. C. J. Penn, J. M. McGrath, and R. B. Bryant, “Ditch drainage management for water quality improvement,” in Agricultural Drainage Ditches: Mitigation Wetlands for the 21st Century, M. T. Moore and R. Kroger, Eds., Research Signpost, Kerala, India, 2010. View at Google Scholar
  9. D. Stoner, C. Penn, and J. McGrath, “Phosphorus sorption onto by-products ina flow through setting: effect of material properties,” Journal of Environment Quality. In press. View at Publisher · View at Google Scholar
  10. C. J. Penn and J. M. McGrath, “Predicting phosphorus sorption onto steel slag using a flow-through approach with application to a pilot scale system,” Journal of Water Resource and Protection, vol. 3, no. 4, pp. 235–244, 2011. View at Google Scholar
  11. C. J. Penn et al., “Use of industrial by-products to sorb and retain phosphorus,” Communications in Soil Science and Plant Analysis, vol. 42, pp. 633–644, 2011. View at Google Scholar
  12. R. B. Brennan, O. Fenton, M. Rodgers, and M. G. Healy, “Evaluation of chemical amendments to control phosphorus losses from dairy slurry,” Soil Use and Management, vol. 27, no. 2, pp. 238–246, 2011. View at Publisher · View at Google Scholar
  13. R. B. Clark, K. D. Ritchey, and V. C. Baligar, “Benefits and constraints for use of FGD products on agricultural land,” Fuel, vol. 80, no. 6, pp. 821–828, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. E. Sumner, D. E. Radcliffe, M. McCray, E. Carter, and R. L. Clark, “Gypsum as an ameliorant for subsoil hardpans,” Soil Technology, vol. 3, no. 3, pp. 253–258, 1990. View at Google Scholar · View at Scopus
  15. K. D. Ritchey, R. F. Korcak, C. M. Feldhake, V. C. Baligar, and R. B. Clark, “Calcium sulfate or coal combustion by-product spread on the soil surface to reduce evaporation, mitigate subsoil acidity and improve plant growth,” Plant and Soil, vol. 182, no. 2, pp. 209–219, 1996. View at Google Scholar · View at Scopus
  16. K. H. Tan, Soil Sampling, Preparation, and Analysis, Taylor & Francis, 2005.
  17. J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Analytica Chimica Acta, vol. 27, pp. 31–36, 1962. View at Google Scholar · View at Scopus
  18. A. Mehlich, “Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant,” Communications in Soil Science & Plant Analysis, vol. 15, no. 12, pp. 1409–1416, 1984. View at Google Scholar · View at Scopus
  19. D. A. Storer, “A simple high sample volume ashing procedure for determination of soil organic matter,” Communications in Soil Science & Plant Analysis, vol. 15, no. 7, pp. 759–772, 1984. View at Google Scholar · View at Scopus
  20. J. W. Tukey, The Problem of Multiple Comparisons, Princeton University, 1953.
  21. F. J. Coale, “Descriptions of the soil test interpretive categories used by the University of Maryland soil testing laboratory,” in SFM-3, U. O. M. Extension, Ed., University of Maryland Extension, College Park, Md, USA, 1996. View at Google Scholar
  22. J. M. McGrath and F. J. Coale, “Converting among soil test analyses frequently used in Maryland,” in SFM-4, U. O. M. Extension, Ed., University of Maryland Extension, College Park, Md, USA, 2006. View at Google Scholar
  23. P. J. A. Kleinman, A. L. Allen, B. A. Needelman et al., “Dynamics of phosphorus transfers from heavily manured Coastal Plain soils to drainage ditches,” Journal of Soil and Water Conservation, vol. 62, no. 4, pp. 225–235, 2007. View at Google Scholar · View at Scopus