Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 751956, 11 pages
Research Article

Quantitative Analysis of Total Petroleum Hydrocarbons in Soils: Comparison between Reflectance Spectroscopy and Solvent Extraction by 3 Certified Laboratories

1Porter School of Environmental Studies, Tel-Aviv University, Tel-Aviv 69978, Israel
2Remote Sensing Laboratory, Tel-Aviv University, Tel-Aviv 69978, Israel
3Geography and Human Environment Department, Tel-Aviv University, P.O. Box 39040, Tel-Aviv 69978, Israel
4The Soil Erosion Research Station, Ruppin Institute, Emeck Hefer 40250, Israel

Received 9 January 2012; Revised 29 March 2012; Accepted 3 April 2012

Academic Editor: Jose Alexandre Melo Dematte

Copyright © 2012 Guy Schwartz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The commonly used analytic method for assessing total petroleum hydrocarbons (TPH) in soil, EPA method 418.1, is usually based on extraction with 1,1,2-trichlorotrifluoroethane (Freon 113) and FTIR spectroscopy of the extracted solvent. This method is widely used for initial site investigation, due to the relative low price per sample. It is known that the extraction efficiency varies depending on the extracting solvent and other sample properties. This study’s main goal was to evaluate reflectance spectroscopy as a tool for TPH assessment, as compared with three commercial certified laboratories using traditional methods. Large variations were found between the results of the three commercial laboratories, both internally (average deviation up to 20%), and between laboratories (average deviation up to 103%). Reflectance spectroscopy method was found be as good as the commercial laboratories in terms of accuracy and could be a viable field-screening tool that is rapid, environmental friendly, and cost effective.