Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 906864, 6 pages
http://dx.doi.org/10.1155/2012/906864
Research Article

Microbial Profiles of Rhizosphere and Bulk Soil Microbial Communities of Biofuel Crops Switchgrass (Panicum virgatum L.) and Jatropha (Jatropha curcas L.)

1School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
2Discipline of Wasteland Research, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G.B. Marg, Bhavnagar, Gujarat 364002, India

Received 22 September 2011; Revised 4 February 2012; Accepted 6 February 2012

Academic Editor: Walter Willms

Copyright © 2012 Doongar R. Chaudhary et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. D. Solomon, “Biofuels and sustainability,” Annals of the New York Academy of Sciences, vol. 1185, pp. 119–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Hinsinger, A. G. Bengough, D. Vetterlein, and I. M. Young, “Rhizosphere: biophysics, biogeochemistry and ecological relevance,” Plant and Soil, vol. 321, no. 1-2, pp. 117–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Sørensen, “The rhizosphere as a habitat for soil microorganisms,” in Modern Soil Microbiology, J. D. Van Elsas, J. T. Trevors, and E. M. H. Wellington, Eds., pp. 21–45, Marcel Dekker, New York, NY, USA, 1997. View at Google Scholar
  4. C. T. Green and K. M. Scow, “Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers,” Hydrogeology Journal, vol. 8, no. 1, pp. 126–141, 2000. View at Google Scholar · View at Scopus
  5. N. J. Ritchie, M. E. Schutter, R. P. Dick, and D. D. Myrold, “Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil,” Applied and Environmental Microbiology, vol. 66, no. 4, pp. 1668–1675, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. R. D. Bardgett, P. J. Hobbs, and A. Frostegård, “Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland,” Biology and Fertility of Soils, vol. 22, no. 3, pp. 261–264, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Frostegård, E. Bååth, and A. Tunlio, “Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis,” Soil Biology and Biochemistry, vol. 25, no. 6, pp. 723–730, 1993. View at Google Scholar · View at Scopus
  8. L. Zelles, “Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review,” Biology and Fertility of Soils, vol. 29, no. 2, pp. 111–129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Moore-Kucera and R. P. Dick, “PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence,” Microbial Ecology, vol. 55, no. 3, pp. 500–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. E. Hicks, R. I. Amann, and D. A. Stahl, “Dual staining of natural bacterioplankton with 4',6-diamidino-2- phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences,” Applied and Environmental Microbiology, vol. 58, no. 7, pp. 2158–2163, 1992. View at Google Scholar · View at Scopus
  11. R. I. Amann, L. Krumholz, and D. A. Stahl, “Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology,” Journal of Bacteriology, vol. 172, no. 2, pp. 762–770, 1990. View at Google Scholar · View at Scopus
  12. B. McCune and M. J. Mefford, PC-ORD. Multivariate Analysis of Ecological Data. Version 5, MjM Software, Gleneden Beach, Ore, USA, 2006.
  13. N. Nunan, B. Singh, E. Reid et al., “Sheep-urine-induced changes in soil microbial community structure,” FEMS Microbiology Ecology, vol. 56, no. 2, pp. 310–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Treonis, N. J. Ostle, A. W. Stott, R. Primrose, S. J. Grayston, and P. Ineson, “Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs,” Soil Biology and Biochemistry, vol. 36, no. 3, pp. 533–537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. C. White and R. H. Findlay, “Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms,” Hydrobiologia, vol. 159, no. 1, pp. 119–132, 1988. View at Publisher · View at Google Scholar · View at Scopus
  16. K. H. Söderberg and E. Bååth, “Bacterial activity along a young barley root measured by the thymidine and leucine incorporation techniques,” Soil Biology and Biochemistry, vol. 30, no. 10-11, pp. 1259–1268, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. V. V. S. R. Gupta and J. J. Germida, “Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation,” Soil Biology and Biochemistry, vol. 20, no. 6, pp. 777–786, 1988. View at Google Scholar · View at Scopus
  18. G. P. Zogg, D. R. Zak, D. B. Ringelberg, N. W. MacDonald, K. S. Pregitzer, and D. C. White, “Compositional and functional shifts in microbial communities due to soil warming,” Soil Science Society of America Journal, vol. 61, no. 2, pp. 475–481, 1997. View at Google Scholar · View at Scopus