Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2014, Article ID 627129, 5 pages
http://dx.doi.org/10.1155/2014/627129
Research Article

Using Capacitance Sensors for the Continuous Measurement of the Water Content in the Litter Layer of Forest Soil

1Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
2Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
3College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan

Received 7 January 2014; Revised 3 March 2014; Accepted 10 March 2014; Published 3 April 2014

Academic Editor: Davey Jones

Copyright © 2014 Mioko Ataka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. T. Park, S. Hattori, and T. Tanaka, “Development of a numerical model for evaluating the effect of litter layer on evaporation,” Journal of Forest Research, vol. 3, pp. 25–33, 1998. View at Google Scholar
  2. K. B. Wilson, P. J. Hanson, and D. D. Baldocchi, “Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle,” Agricultural and Forest Meteorology, vol. 102, no. 2-3, pp. 83–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Ogée and Y. Brunet, “A forest floor model for heat and moisture including a litter layer,” Journal of Hydrology, vol. 255, no. 1–4, pp. 212–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Šnajdr, V. Valášková, V. Merhautová, J. Herinková, T. Cajthaml, and P. Baldrian, “Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil,” Soil Biology and Biochemistry, vol. 40, no. 9, pp. 2068–2075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. O'Connell, “Microbial decomposition (respiration) of litter in eucalypt forests of South-Western Australia: an empirical model based on laboratory incubations,” Soil Biology and Biochemistry, vol. 22, no. 2, pp. 153–160, 1990. View at Google Scholar · View at Scopus
  6. J. P. Schimel, J. M. Gulledge, J. S. Clein-Curley, J. E. Lindstrom, and J. F. Braddock, “Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga,” Soil Biology and Biochemistry, vol. 31, no. 6, pp. 831–838, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Lee, H.-J. Wu, J. Sigler, C. Oishi, and T. Siccama, “Rapid and transient response of soil respiration to rain,” Global Change Biology, vol. 10, no. 6, pp. 1017–1026, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Savage, E. A. Davidson, A. D. Richardson, and D. Y. Hollinger, “Three scales of temporal resolution from automated soil respiration measurements,” Agricultural and Forest Meteorology, vol. 149, no. 11, pp. 2012–2021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Borken and E. Matzner, “Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils,” Global Change Biology, vol. 15, no. 4, pp. 808–824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Berryman, J. D. Marshall, T. Rahn, M. Litvak, and J. Butnor, “Decreased carbon limitation of litter respiration in a mortality-affected pinon-juniper woodland,” Biogeosciences, vol. 10, pp. 1625–1634, 2013. View at Google Scholar
  11. M. Jomura, Y. Kominami, and M. Ataka, “Differences between coarse woody debris and leaf litter in the response of heterotrophic respiration to rainfall events,” Journal of Forest Research, vol. 17, pp. 305–311, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Börner, M. G. Johnson, P. T. Rygiewicz, D. T. Tingey, and G. D. Jarrell, “A two-probe method for measuring water content of thin forest floor litter layers using time domain reflectometry,” Soil Technology, vol. 9, no. 3, pp. 199–207, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. P. J. Hanson, E. G. O'Neill, M. L. S. Chambers, J. S. Riggs, J. D. Joslin, and M. H. Wolfe, “Soil respiration and litter decomposition,” in North America Temperate Deciduous Forest Responses to Changing Precipitation Regimes, P. J. Hanson and S. D. Wullschleger, Eds., pp. 163–189, Springer, New York, NY, USA, 2003. View at Google Scholar
  14. T. J. Gillespie and G. E. Kidd, “Sensing duration of leaf moisture retention using electrical impedance grids,” Canadian Journal of Plant Science, vol. 58, pp. 179–187, 1978. View at Google Scholar
  15. K. Tamai and S. Hattori, “Modeling of evaporation from forest floor in a deciduous broad-leaved forest and its application to basin,” Journal of Forest Research, vol. 76, pp. 233–241, 1994 (Japanese). View at Google Scholar
  16. S. Kaneko, N. Akieda, F. Naito, K. Tamai, and Y. Hirano, “Nitrogen budget of a rehabilitated forest on a degraded granitic hill,” Journal of Forest Research, vol. 12, no. 1, pp. 38–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Goto, Y. Kominami, T. Miyama, K. Tamai, and Y. Kanazawa, “Aboveground biomass and net primary production of a broad-leaved secondary forest in the southern part of Kyoto prefecture, central Japan,” Bulletin of Forestry and Forest Products Research Institute, vol. 387, pp. 115–147, 2003 (Japanese). View at Google Scholar
  18. H. R. Bogena, J. A. Huisman, C. Oberdörster, and H. Vereecken, “Evaluation of a low-cost soil water content sensor for wireless network applications,” Journal of Hydrology, vol. 344, no. 1-2, pp. 32–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Ataka, Y. Kominami, M. Jomura, K. Yoshimura C Uematsu, and C. Uematsu, “CO2 efflux from leaf litter focused on spatial and temporal heterogeneity of moisture,” Journal of Forest Research, vol. 19, pp. 295–300, 2014. View at Google Scholar
  20. H. Imoto, T. Nishimura, and T. Miyazaki, “Calibration and applicability of EC-5 sensor,” Journal of the Japanese Society of Soil Physics, vol. 114, pp. 27–31, 2010 (Japanese). View at Google Scholar
  21. M. S. Carbone, C. J. Still, A. R. Ambrose et al., “Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration,” Oecologia, vol. 167, no. 1, pp. 265–278, 2011. View at Publisher · View at Google Scholar · View at Scopus