Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2011, Article ID 485310, 8 pages
http://dx.doi.org/10.1155/2011/485310
Review Article

Gene Expression Profiling for In Silico Microdissection of Hodgkin's Lymphoma Microenvironment and Identification of Prognostic Features

1Department of Bio-Pathology, Institut Paoli-Calmettes, 232, bd Sainte-Marguerite, 13273 Marseille Cedex 09, France
2Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
3Faculty of Medicine, University of Mediterranee, 13284 Marseille Cedex 07, France

Received 2 August 2010; Accepted 11 November 2010

Academic Editor: Shaji Kumar

Copyright © 2011 François Bertucci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hasenclever and V. Diehl, “A prognostic score for advanced Hodgkin's disease,” New England Journal of Medicine, vol. 339, no. 21, pp. 1506–1514, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. Brice, “Managing relapsed and refractory Hodgkin lymphoma,” British Journal of Haematology, vol. 141, no. 1, pp. 3–13, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. E. S. Jaffe, N. L. Harris, H. Stein, and J. W. Vardiman, Eds., Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues, IARC Press, Lyon, France, 2008.
  4. R. O. Casasnovas, N. Mounier, P. Brice et al., “Plasma cytokine and soluble receptor signature predicts outcome of patients with classical Hodgkin's lymphoma: a study from the groupe d'Etude des lymphomes de l'Adulte,” Journal of Clinical Oncology, vol. 25, no. 13, pp. 1732–1740, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. B. F. Skinnider and T. W. Mak, “The role of cytokines in classical Hodgkin lymphoma,” Blood, vol. 99, no. 12, pp. 4283–4297, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. Aldinucci, A. Gloghini, A. Pinto, R. De Filippi, and A. Carbone, “The classical Hodgkin's lymphoma microenvironment and its role in promoting tumour growth and immune escape,” Journal of Pathology, vol. 221, no. 3, pp. 248–263, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. N. A. Marshall, L. E. Christie, L. R. Munro et al., “Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma,” Blood, vol. 103, no. 5, pp. 1755–1762, 2004. View at Publisher · View at Google Scholar · View at PubMed
  8. R. Yamamoto, M. Nishikori, T. Kitawaki et al., “PD-1 PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma,” Blood, vol. 111, no. 6, pp. 3220–3224, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. M. Teichmann, B. Meyer, A. Beck, and G. Niedobitek, “Expression of the interferon-inducible chemokine IP-10 (CXCL10), a chemokine with proposed anti-neoplastic functions, in Hodgkin lymphoma and nasopharyngeal carcinoma,” Journal of Pathology, vol. 206, no. 1, pp. 68–75, 2005. View at Publisher · View at Google Scholar · View at PubMed
  10. T. Álvaro, M. Lejeune, MA. T. Salvadó et al., “Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells,” Clinical Cancer Research, vol. 11, no. 4, pp. 1467–1473, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. T. Álvaro-Naranjo, M. Lejeune, M. T. Salvadó-Usach et al., “Tumor-infiltrating cells as a prognostic factor in Hodgkin's lymphoma: a quantitative tissue microarray study in a large retrospective cohort of 267 patients,” Leukemia and Lymphoma, vol. 46, no. 11, pp. 1581–1591, 2005. View at Publisher · View at Google Scholar · View at PubMed
  12. T. W. Kelley, B. Pohlman, P. Elson, and E. D. Hsi, “The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression,” American Journal of Clinical Pathology, vol. 128, no. 6, pp. 958–965, 2007. View at Publisher · View at Google Scholar · View at PubMed
  13. F. Bertucci, R. Houlgatte, C. Nguyen, P. Viens, B. R. Jordan, and D. Birnbaum, “Gene expression profiling of cancer by use of DNA arrays: how far from the clinic?” Lancet Oncology, vol. 2, no. 11, pp. 674–682, 2001. View at Publisher · View at Google Scholar · View at PubMed
  14. F. Bertucci, P. Finetti, N. Cervera, D. Maraninchi, P. Viens, and D. Birnbaum, “Gene expression profiling and clinical outcome in breast cancer,” OMICS A Journal of Integrative Biology, vol. 10, no. 4, pp. 429–443, 2006. View at Publisher · View at Google Scholar · View at PubMed
  15. C. Sotiriou and L. Pusztai, “Gene-expression signatures in breast cancer,” New England Journal of Medicine, vol. 360, no. 8, pp. 790–800, 2009. View at Publisher · View at Google Scholar · View at PubMed
  16. M. R. Emmert-Buck, R. F. Bonner, P. D. Smith et al., “Laser capture microdissection,” Science, vol. 274, no. 5289, pp. 998–1001, 1996. View at Publisher · View at Google Scholar
  17. S. Lechner, U. Müller-Ladner, E. Neumann et al., “Use of simplified transcriptors for the analysis of gene expression profiles in laser-microdissected cell populations,” Laboratory Investigation, vol. 81, no. 9, pp. 1233–1242, 2001. View at Google Scholar
  18. J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and location of immune cells within human colorectal tumors predict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–1964, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. A. A. Alizadeh, D. T. Ross, C. M. Perou, and M. Van De Rijn, “Towards a novel classification of human malignancies based on gene expression patterns,” Journal of Pathology, vol. 195, no. 1, pp. 41–52, 2001. View at Publisher · View at Google Scholar · View at PubMed
  20. C. M. Perou, T. Sørile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at PubMed
  21. A. A. Alizadeh, M. B. Elsen, R. E. Davis et al., “Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,” Nature, vol. 403, no. 6769, pp. 503–511, 2000. View at Publisher · View at Google Scholar · View at PubMed
  22. S. S. Dave, G. Wright, B. Tan et al., “Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells,” New England Journal of Medicine, vol. 351, no. 21, pp. 2159–2169, 2004. View at Publisher · View at Google Scholar · View at PubMed
  23. P. Farinha, H. Masoudi, B. F. Skinnider et al., “Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL),” Blood, vol. 106, no. 6, pp. 2169–2174, 2005. View at Publisher · View at Google Scholar · View at PubMed
  24. S. Monti, K. J. Savage, J. L. Kutok et al., “Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response,” Blood, vol. 105, no. 5, pp. 1851–1861, 2005. View at Publisher · View at Google Scholar · View at PubMed
  25. A. L. Shaffer, A. Rosenwald, E. M. Hurt et al., “Signatures of the immune response,” Immunity, vol. 15, no. 3, pp. 375–385, 2001. View at Publisher · View at Google Scholar
  26. A. L. Shaffer, G. Wright, L. Yang et al., “A library of gene expression signatures to illuminate normal and pathological lymphoid biology,” Immunological Reviews, vol. 210, pp. 67–85, 2006. View at Publisher · View at Google Scholar · View at PubMed
  27. A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15545–15550, 2005. View at Publisher · View at Google Scholar · View at PubMed
  28. B. Chetaille, F. Bertucci, P. Finetti et al., “Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome,” Blood, vol. 113, no. 12, pp. 2765–2775, 2009. View at Publisher · View at Google Scholar · View at PubMed
  29. E. Devilard, F. Bertucci, P. Trempat et al., “Gene expression profiling defines molecular subtypes of classical Hodgkin's disease,” Oncogene, vol. 21, no. 19, pp. 3095–3102, 2002. View at Publisher · View at Google Scholar
  30. A. Sánchez-Aguilera, C. Montalbán, P. De La Cueva et al., “Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma,” Blood, vol. 108, no. 2, pp. 662–668, 2006. View at Publisher · View at Google Scholar · View at PubMed
  31. C. Steidl, T. Lee, S. P. Shah et al., “Tumor-associated macrophages and survival in classic Hodgkin's lymphoma,” New England Journal of Medicine, vol. 362, no. 10, pp. 875–885, 2010. View at Publisher · View at Google Scholar · View at PubMed
  32. C. Fan, D. S. Oh, L. Wessels et al., “Concordance among gene-expression-based predictors for breast cancer,” New England Journal of Medicine, vol. 355, no. 6, pp. 560–569, 2006. View at Publisher · View at Google Scholar · View at PubMed
  33. C. Sotiriou and M. J. Piccart, “Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care?” Nature Reviews Cancer, vol. 7, no. 7, pp. 545–553, 2007. View at Publisher · View at Google Scholar · View at PubMed
  34. K. Pulford, A. H. Banham, L. Lyne et al., “The BCL11A transcription factor: its distribution in normal and malignant tissues and use as a marker for plasmacytoid dendritic cells,” Leukemia, vol. 20, no. 8, pp. 1439–1441, 2006. View at Publisher · View at Google Scholar · View at PubMed
  35. I. Anagnostopoulos, M. L. Hansmann, K. Franssila et al., “European Task Force on Lymphoma project on lymphocyte predominance Hodgkin disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes,” Blood, vol. 96, no. 5, pp. 1889–1899, 2000. View at Google Scholar
  36. Y. Oki, B. Pro, L. E. Fayad et al., “Phase 2 study of gemcitabine in combination with rituximab in patients with recurrent or refractory Hodgkin lymphoma,” Cancer, vol. 112, no. 4, pp. 831–836, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. A. Younes and F. Wong, “Experience with Y-ibritumomab tiuxetan for relapsed classical Hodgkin lymphoma,” Annals of Oncology, vol. 20, no. 6, pp. 1147–1148, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. R. J. Jones, C. D. Gocke, Y. L. Kasamon et al., “Circulating clonotypic B cells in classic Hodgkin lymphoma,” Blood, vol. 113, no. 23, pp. 5920–5926, 2009. View at Publisher · View at Google Scholar · View at PubMed
  39. D. Canioni, G. Salles, N. Mounier et al., “High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial,” Journal of Clinical Oncology, vol. 26, no. 3, pp. 440–446, 2008. View at Publisher · View at Google Scholar · View at PubMed
  40. JO. A. Van Ginderachter, K. Movahedi, G. Hassanzadeh Ghassabeh et al., “Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion,” Immunobiology, vol. 211, no. 6–8, pp. 487–501, 2006. View at Publisher · View at Google Scholar · View at PubMed
  41. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar
  42. L. Xerri, B. Chetaille, N. Seriari et al., “Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia,” Human Pathology, vol. 39, no. 7, pp. 1050–1058, 2008. View at Publisher · View at Google Scholar · View at PubMed
  43. S. Wiedenmann, T. Rüdiger, R. D. Gascoyne et al., “Workshop on the relationship between nodular lymphocyte predominant Hodgkin's lymphoma and T cell/histiocyte-rich B cell lymphoma,” Annals of Oncology, vol. 13, no. 1, pp. 44–51, 2002. View at Publisher · View at Google Scholar
  44. G. Khan, “Epstein-Barr virus, cytokines, and inflammation: a cocktail for the pathogenesis of Hodgkin's lymphoma?” Experimental Hematology, vol. 34, no. 4, pp. 399–406, 2006. View at Publisher · View at Google Scholar · View at PubMed
  45. G. Kapatai and P. Murray, “Contribution of the Epstein-Barr virus to the molecular pathogenesis of Hodgkin lymphoma,” Journal of Clinical Pathology, vol. 60, no. 12, pp. 1342–1349, 2007. View at Publisher · View at Google Scholar · View at PubMed
  46. K. R. N. Baumforth, A. Birgersdotter, G. M. Reynolds et al., “Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin's lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells,” American Journal of Pathology, vol. 173, no. 1, pp. 195–204, 2008. View at Publisher · View at Google Scholar · View at PubMed
  47. O. Takeuchi and S. Akira, “MDA5/RIG-I and virus recognition,” Current Opinion in Immunology, vol. 20, no. 1, pp. 17–22, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. B. Sánchez-Espiridión, A. Sánchez-Aguilera, C. Montalbán et al., “A TaqMan low-density array to predict outcome in advanced hodgkin's Lymphoma using paraffin-embedded samples,” Clinical Cancer Research, vol. 15, no. 4, pp. 1367–1375, 2009. View at Publisher · View at Google Scholar · View at PubMed
  49. B. Sánchez-Espiridión, C. Montalbán, Á. López et al., “A molecular risk score based on 4 functional pathways for advanced classical Hodgkin lymphoma,” Blood, vol. 116, no. 8, pp. e12–e17, 2010. View at Publisher · View at Google Scholar · View at PubMed
  50. C. Steidl, A. Telenius, S. P. Shah et al., “Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome,” Blood, vol. 116, no. 3, pp. 418–427, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. A. Navarro, A. Gaya, A. Martinez et al., “MicroRNA expression profiling in classic Hodgkin lymphoma,” Blood, vol. 111, no. 5, pp. 2825–2832, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. Y. Ma, L. Visser, H. Roelofsen et al., “Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes,” Blood, vol. 111, no. 4, pp. 2339–2346, 2008. View at Publisher · View at Google Scholar · View at PubMed