Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2011, Article ID 835314, 8 pages
http://dx.doi.org/10.1155/2011/835314
Review Article

HCV Infection and B-Cell Lymphomagenesis

1Department of Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, MusashiMurayama-shi, Tokyo 208-0011, Japan
2Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
3Department of Bacterial Pathogenesis and Infection, National Institute of Infectious Diseases, 4-7-1 Gakuen, MusashiMurayama-shi, Tokyo 208-0011, Japan

Received 7 March 2011; Revised 14 June 2011; Accepted 17 June 2011

Academic Editor: Daniele Vallisa

Copyright © 2011 Masahiko Ito et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Suzuki, K. Ishii, H. Aizaki, and T. Wakita, “Hepatitis C viral life cycle,” Advanced Drug Delivery Reviews, vol. 59, no. 12, pp. 1200–1212, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. G. M. Lauer and B. D. Walker, “Hepatitis C virus infection,” New England Journal of Medicine, vol. 345, no. 1, pp. 41–52, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. N. H. Afdhal, “The natural history of hepatitis C,” Seminars in Liver Disease, vol. 24, supplement 2, pp. 3–8, 2004. View at Google Scholar
  4. V. Agnello, R. T. Chung, and L. M. Kaplan, “A role for hepatitis C virus infection in type II cryoglobulinemia,” New England Journal of Medicine, vol. 327, no. 21, pp. 1490–1495, 1992. View at Google Scholar · View at Scopus
  5. E. Zuckerman, T. Zuckerman, A. M. Levine et al., “Hepatitis C virus infection in patients with B-cell non-Hodgkin lymphoma,” Annals of Internal Medicine, vol. 127, no. 6, pp. 423–428, 1997. View at Google Scholar · View at Scopus
  6. S. de Sanjose, Y. Benavente, C. M. Vajdic et al., “Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the international lymphoma epidemiology consortium,” Clinical Gastroenterology and Hepatology, vol. 6, no. 4, pp. 451–458, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. N. C. Turner, G. Dusheiko, and A. Jones, “Hepatitis C and B-cell lymphoma,” Annals of Oncology, vol. 14, no. 9, pp. 1341–1345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Mazzaro, F. Franzin, P. Tulissi et al., “Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to α-interferon therapy,” Cancer, vol. 77, no. 12, pp. 2604–2613, 1996. View at Google Scholar · View at Scopus
  9. V. Agnello, C. Mecucci, M. Casato et al., “Regression of splenic lymphoma after treatment of hepatitis C virus infection,” New England Journal of Medicine, vol. 347, no. 26, pp. 2168–2170, 2002. View at Publisher · View at Google Scholar · View at PubMed
  10. O. Hermine, F. Lefrère, J. P. Bronowicki et al., “Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection,” New England Journal of Medicine, vol. 347, no. 2, pp. 89–94, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Houghton, A. Weiner, J. Han, G. Kuo, and Q. L. Choo, “Molecular biology of the hepatitis C viruses: implications for diagnosis, development and control of viral disease,” Hepatology, vol. 14, no. 2, pp. 381–388, 1991. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Han, V. Shyamala, K. H. Richman et al., “Characterization of the terminal regions of hepatitis C viral RNA: identification of conserved sequences in the 5' untranslated region and poly(A) tails at the 3' end,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 5, pp. 1711–1715, 1991. View at Google Scholar · View at Scopus
  13. A. L. Zignego, D. Macchia, M. Monti et al., “Infection of peripheral mononuclear blood cells by hepatitis C virus,” Journal of Hepatology, vol. 15, no. 3, pp. 382–386, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Ferri, M. Monti, L. La Civita et al., “Infection of peripheral blood mononuclear cells by hepatitis C virus in mixed cryoglobulinemia,” Blood, vol. 82, no. 12, pp. 3701–3704, 1993. View at Google Scholar · View at Scopus
  15. H. M. Muller, E. Pfaff, T. Goeser, B. Kallinowski, C. Solbach, and L. Theilmann, “Peripheral blood leukocytes serve as a possible extrahepatic site for hepatitis C virus replication,” Journal of General Virology, vol. 74, no. 4, pp. 669–676, 1993. View at Google Scholar · View at Scopus
  16. J. Moldvay, P. Deny, S. Pol, C. Brechot, and E. Lamas, “Detection of hepatitis C virus RNA in peripheral blood mononuclear cells of infected patients by in situ hybridization,” Blood, vol. 83, no. 1, pp. 269–273, 1994. View at Google Scholar · View at Scopus
  17. L. Muratori, D. Gibellini, M. Lenzi et al., “Quantification of hepatitis C virus-infected peripheral blood mononuclear cells by in situ reverse transcriptase-polymerase chain reaction,” Blood, vol. 88, no. 7, pp. 2768–2774, 1996. View at Google Scholar · View at Scopus
  18. G. Morsica, G. Tambussi, G. Sitia et al., “Replication of hepatitis C virus in B lymphocytes (CD19+),” Blood, vol. 94, no. 3, pp. 1138–1139, 1999. View at Google Scholar · View at Scopus
  19. P. Pileri, Y. Uematsu, S. Campagnoli et al., “Binding of hepatitis C virus to CD81,” Science, vol. 282, no. 5390, pp. 938–941, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Z. Gong, L. Y. Lai, Y. F. Jiang, Y. He, and X. S. Su, “HCV replication in PBMC and its influence on interferon therapy,” World Journal of Gastroenterology, vol. 9, no. 2, pp. 291–294, 2003. View at Google Scholar · View at Scopus
  21. D. Sansonno, A. R. Iacobelli, V. Cornacchiulo, G. Iodice, and F. Dammacco, “Detection of hepatitis C virus (HCV) proteins by immunofluorescence and HCV RNA genomic sequences by non-isotopic in situ hybridization in bone marrow and peripheral blood mononuclear cells of chronically HCV-infected patients,” Clinical and Experimental Immunology, vol. 103, no. 3, pp. 414–421, 1996. View at Google Scholar · View at Scopus
  22. I. Castillo, M. Pardo, J. Bartolomé et al., “Occult hepatitis C virus infection in patients in whom the etiology of persistently abnormal results of liver-function tests is unknown,” Journal of Infectious Diseases, vol. 189, no. 1, pp. 7–14, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. I. Castillo, E. Rodríguez-Iñigo, J. Bartolomé et al., “Hepatitis C virus replicates in peripheral blood mononuclear cells of patients with occult hepatitis C virus infection,” Gut, vol. 54, no. 5, pp. 682–685, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. D. Januszkiewicz-Lewandowska, J. Wysocki, M. Pernak et al., “Presence of hepatitis C virus (HCV)-RNA in peripheral blood mononuclear cells in HCV serum negative patients during interferon and ribavirin therapy,” Japanese Journal of Infectious Diseases, vol. 60, no. 1, pp. 29–32, 2007. View at Google Scholar · View at Scopus
  25. C. Caussin-Schwemling, C. Schmitt, and F. Stoll-Keller, “Study of the infection of human blood derived monocyte/macrophages with hepatitis C virus in vitro,” Journal of Medical Virology, vol. 65, no. 1, pp. 14–22, 2001. View at Publisher · View at Google Scholar · View at PubMed
  26. J. Greeve, A. Philipsen, K. Krause et al., “Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas,” Blood, vol. 101, no. 9, pp. 3574–3580, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. C. Navas, A. Fuchs, E. Schvoerer, A. Bohbot, A. M. Aubertin, and F. Stoll-Keller, “Dendritic cell susceptibility to hepatitis C virus genotype 1 infection,” Journal of Medical Virology, vol. 67, no. 2, pp. 152–161, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Y. Kondo, Y. Ueno, E. Kakazu et al., “Lymphotropic HCV strain can infect human primary naïve CD4+ cells and affect their proliferation and IFN-γ secretion activity,” Journal of Gastroenterology, vol. 46, no. 2, pp. 232–241, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. T. Blackard, N. Kemmer, and K. E. Sherman, “Extrahepatic replication of HCV: insights into clinical manifestations and biological consequences,” Hepatology, vol. 44, no. 1, pp. 15–22, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. D. Ducoulombier, A. M. Roque-Afonso, G. Di Liberto et al., “Frequent compartmentalization of hepatitis C virus variants in circulating B cells and monocytes,” Hepatology, vol. 39, no. 3, pp. 817–825, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. H. M. Müller, B. Kallinowski, C. Solbach, L. Theilmann, T. Goeser, and E. Pfaff, “B-lymphocytes are predominantly involved in viral propagation of hepatitis C virus (HCV),” Archives of Virology. Supplementum, vol. 9, pp. 307–316, 1994. View at Google Scholar · View at Scopus
  32. M. Ito, K. Murakami, T. Suzuki et al., “Enhanced expression of lymphomagenesis-related genes in peripheral blood B cells of chronic hepatitis C patients,” Clinical Immunology, vol. 135, no. 3, pp. 459–465, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. M. Inokuchi, T. Ito, M. Uchikoshi et al., “Infection of B cells with hepatitis C virus for the development of lymphoproliferative disorders in patients with chronic hepatitis C,” Journal of Medical Virology, vol. 81, no. 4, pp. 619–627, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. Zuker, “On findings all suboptimal foldings of an RNA molecule,” Science, vol. 244, no. 4900, pp. 48–52, 1989. View at Google Scholar · View at Scopus
  35. T. Durand, G. Di Liberto, H. Colman et al., “Occult infection of peripheral B cells by hepatitis C variants which have low translational efficiency in cultured hepatocytes,” Gut, vol. 59, no. 7, pp. 934–942, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. Yoneyama, M. Kikuchi, T. Natsukawa et al., “The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses,” Nature Immunology, vol. 5, no. 7, pp. 730–737, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. D. B. Stetson and R. Medzhitov, “Type I interferons in host defense,” Immunity, vol. 25, no. 3, pp. 373–381, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. Vilcek, “Fifty years of interferon research: aiming at a moving target,” Immunity, vol. 25, no. 3, pp. 343–348, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. K. A. Fitzgerald, S. M. McWhirter, K. L. Faia et al., “IKKε and TBK1 are essential components of the IRF3 signaling pathway,” Nature Immunology, vol. 4, no. 5, pp. 491–496, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. K. Yang, H. Shi, R. Qi et al., “Hsp90 regulates activation of interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells,” Molecular Biology of the Cell, vol. 17, no. 3, pp. 1461–1471, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Schröder, M. Baran, and A. G. Bowie, “Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKε-mediated IRF activation,” EMBO Journal, vol. 27, no. 15, pp. 2147–2157, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. Huang, T. Liu, L. G. Xu, D. Chen, Z. Zhai, and H. B. Shu, “SIKE is an IKK ε/TBK1-associated suppressor of TLR3- and virus-triggered IRF-3 activation pathways,” EMBO Journal, vol. 24, no. 23, pp. 4018–4028, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. K. Agematsu, S. Hokibara, H. Nagumo, and A. Komiyama, “CD27: a memory B-cell marker,” Immunology Today, vol. 21, no. 5, pp. 204–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Mizuochi, M. Ito, K. Saito et al., “Possible recruitment of peripheral blood CXCR3+ CD27+ CD19+ B cells to the liver of chronic hepatitis C patients,” Journal of Interferon and Cytokine Research, vol. 30, no. 4, pp. 243–252, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. S. Pal, D. G. Sullivan, S. Kim et al., “Productive replication of hepatitis C virus in perihepatic lymph nodes in vivo: implications of HCV lymphotropism,” Gastroenterology, vol. 130, no. 4, pp. 1107–1116, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. T. N. Pham and T. I. Michalak, “Occult persistence and lymphotropism of hepatitis C virus infection,” World Journal of Gastroenterology, vol. 14, no. 18, pp. 2789–2793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. T. N. Pham, D. King, S. A. MacParland et al., “Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis C and occult infection,” Gastroenterology, vol. 134, no. 3, pp. 812–822, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. B. Rehermann, “Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence,” Journal of Clinical Investigation, vol. 119, no. 7, pp. 1745–1754, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. S. Merani, D. Petrovic, I. James et al., “Effect of immune pressure on hepatitis C virus evolution: insights from a single-source outbreak,” Hepatology, vol. 53, no. 2, pp. 396–405, 2011. View at Publisher · View at Google Scholar · View at PubMed
  51. D. R. Taylor, S. T. Shi, P. R. Romano, G. N. Barber, and M. M. Lai, “Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein,” Science, vol. 285, no. 5424, pp. 107–110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Foy, K. Li, C. Wang et al., “Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease,” Science, vol. 300, no. 5622, pp. 1145–1148, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. E. Foy, K. Li, R. Sumpter Jr. et al., “Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2986–2991, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. S. J. Polyak, K. S. Khabar, D. M. Paschal et al., “Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response,” Journal of Virology, vol. 75, no. 13, pp. 6095–6106, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. J. Gale Jr., M. J. Korth, N. M. Tang et al., “Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein,” Virology, vol. 230, no. 2, pp. 217–227, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. M. H. Heim, D. Moradpour, and H. E. Blum, “Expression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway,” Journal of Virology, vol. 73, no. 10, pp. 8469–8475, 1999. View at Google Scholar · View at Scopus
  57. W. Lin, S. S. Kim, E. Yeung et al., “Hepatitis C virus core protein blocks interferon signaling by interaction with the STAT1 SH2 domain,” Journal of Virology, vol. 80, no. 18, pp. 9226–9235, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. R. Misiani, P. Bellavita, D. Fenili et al., “Hepatitis C virus infection in patients with essential mixed cryoglobulinemia,” Annals of Internal Medicine, vol. 117, no. 7, pp. 573–577, 1992. View at Google Scholar · View at Scopus
  59. C. Ferri, L. La Civita, G. Longombardo, F. Greco, and S. Bombardieri, “Hepatitis C virus and mixed cryoglobulinaemia,” European Journal of Clinical Investigation, vol. 23, no. 7, pp. 399–405, 1993. View at Google Scholar · View at Scopus
  60. C. Ferri, L. La Civita, A. L. Zignego, and G. Pasero, “Viruses and cancers: possible role of hepatitis C virus,” European Journal of Clinical Investigation, vol. 27, no. 9, pp. 711–718, 1997. View at Google Scholar · View at Scopus
  61. L. Sansonno, F. A. Tucci, S. Sansonno, G. Lauletta, L. Troiani, and D. Sansonno, “B cells and HCV: an infection model of autoimmunity,” Autoimmunity Reviews, vol. 9, no. 2, pp. 93–94, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. C. Mazzaro, V. Zagonel, S. Monfardini et al., “Hepatitis C virus and non-Hodgkin's lymphomas,” British Journal of Haematology, vol. 94, no. 3, pp. 544–550, 1996. View at Google Scholar · View at Scopus
  63. J. P. Gisbert, L. García-Buey, J. M. Pajares, and R. Moreno-Otero, “Prevalence of hepatitis C virus infection in B-cell non-Hodgkin's lymphoma: systematic review and meta-analysis,” Gastroenterology, vol. 125, no. 6, pp. 1723–1732, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Matsuo, A. Kusano, A. Sugumar, S. Nakamura, K. Tajima, and N. E. Mueller, “Effect of hepatitis C virus infection on the risk of non-Hodgkin's lymphoma: a meta-analysis of epidemiological studies,” Cancer Science, vol. 95, no. 9, pp. 745–752, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Negri, D. Little, M. Boiocchi, C. La Vecchia, and S. Franceschi, “B-cell non-Hodgkin's lymphoma and hepatitis C virus infection: a systematic review,” International Journal of Cancer, vol. 111, no. 1, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. A. Nieters, B. Kallinowski, P. Brennan et al., “Hepatitis C and risk of lymphoma: results of the European multicenter case-control study EPILYMPH,” Gastroenterology, vol. 131, no. 6, pp. 1879–1886, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. A. Durandy, “Activation-induced cytidine deaminase: a dual role in class-switch recombination and somatic hypermutation,” European Journal of Immunology, vol. 33, no. 8, pp. 2069–2073, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo, “Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme,” Cell, vol. 102, no. 5, pp. 553–563, 2000. View at Google Scholar · View at Scopus
  69. I. Okazaki, K. Yoshikawa, K. Kinoshita, M. Muramatsu, H. Nagaoka, and T. Honjo, “Activation-induced cytidine deaminase links class switch recombination and somatic hypermutation,” Annals of the New York Academy of Sciences, vol. 987, pp. 1–8, 2003. View at Google Scholar · View at Scopus
  70. R. Küppers and R. Dalla-Favera, “Mechanisms of chromosomal translocations in B cell lymphomas,” Oncogene, vol. 20, no. 40, pp. 5580–5594, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. L. Pasqualucci, P. Neumeister, T. Goossens et al., “Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas,” Nature, vol. 412, no. 6844, pp. 341–346, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. M. Okano, “Haematological associations of Epstein-Barr virus infection,” Bailliere's Best Practice and Research in Clinical Haematology, vol. 13, no. 2, pp. 199–214, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. M. Libra, D. Capello, A. Gloghini et al., “Analysis of aberrant somatic hypermutation (SHM) in non-Hodgkin's lymphomas of patients with chronic HCV infection,” Journal of Pathology, vol. 206, no. 1, pp. 87–91, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. V. M Sung, S. Shimodaira, A. L. Doughty et al., “Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus in vivo and in vitro: the apoptotic effects of virus infection,” Journal of Virology, vol. 77, no. 3, pp. 2134–2146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Machida, K. T. Cheng, V. M. Sung et al., “Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 12, pp. 4262–4267, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. L. Pasqualucci, R. Guglielmino, J. Houldsworth et al., “Expression of the AID protein in normal and neoplastic B cells,” Blood, vol. 104, no. 10, pp. 3318–3325, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. L. A. Smit, R. J. Bende, J. Aten, J. E. Guikema, W. M. Aarts, and C. J. van Noesel, “Expression of activation-induced cytidine deaminase is confined to B-cell non-Hodgkin's lymphomas of germinal-center phenotype,” Cancer Research, vol. 63, no. 14, pp. 3894–3898, 2003. View at Google Scholar · View at Scopus
  78. L. Pasqualucci, G. Bhagat, M. Jankovic et al., “AID is required for germinal center-derived lymphomagenesis,” Nature Genetics, vol. 40, no. 1, pp. 108–112, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. C. Schöllkopf, K. E. Smedby, H. Hjalgrim et al., “Hepatitis C infection and risk of malignant lymphoma,” International Journal of Cancer, vol. 122, no. 8, pp. 1885–1890, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. I. M. Okazaki, H. Hiai, N. Kakazu et al., “Constitutive expression of AID leads to tumorigenesis,” Journal of Experimental Medicine, vol. 197, no. 9, pp. 1173–1181, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. I. M. Okazaki, A. Kotani, and T. Honjo, “Role of AID in tumorigenesis,” Advances in Immunology, vol. 94, pp. 245–273, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. T. Chiba and H. Marusawa, “A novel mechanism for inflammation-associated carcinogenesis; an important role of activation-induced cytidine deaminase (AID) in mutation induction,” Journal of Molecular Medicine, vol. 87, pp. 1023–1027, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. Y. Komeno, J. Kitaura, N. Watanabe-Okochi et al., “AID-induced T-lymphoma or B-leukemia/lymphoma in a mouse BMT model,” Leukemia, vol. 24, no. 5, pp. 1018–1024, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. C. Ishikawa, S. Nakachi, M. Senba, M. Sugai, and N. Mori, “Activation of AID by human T-cell leukemia virus Tax oncoprotein and the possible role of its constitutive expression in ATL genesis,” Carcinogenesis, vol. 32, no. 1, pp. 110–119, 2011. View at Google Scholar
  85. J. K. Oem, C. Jackel-Cram, Y. P. Li et al., “Hepatitis C virus non-structural protein-2 activates CXCL-8 transcription through NF-κB,” Archives of Virology, vol. 153, no. 2, pp. 293–301, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. Y. Endo, H. Marusawa, K. Kinoshita et al., “Expression of activation-induced cytidine deaminase in human hepatocytes via NF-κB signaling,” Oncogene, vol. 26, no. 38, pp. 5587–5595, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. S. Nakamura, Y. Yatabe, and M. Seto, “Cyclin D1 overexpression in malignant lymphomas,” Pathology International, vol. 47, no. 7, pp. 421–429, 1997. View at Google Scholar · View at Scopus
  88. M. Fu, C. Wang, Z. Li, T. Sakamaki, and R. G. Pestell, “Minireview: Cyclin D1: normal and abnormal functions,” Endocrinology, vol. 145, no. 12, pp. 5439–5447, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. S. Wessendorf, C. Schwaenen, H. Kohlhammer et al., “Hidden gene amplifications in aggressive B-cell non-Hodgkin lymphomas detected by microarray-based comparative genomic hybridization,” Oncogene, vol. 22, no. 9, pp. 1425–1429, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. R. C. Aguiar, Y. Yakushijin, S. Kharbanda, R. Salgia, J. A. Fletcher, and M. A. Shipp, “BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration,” Blood, vol. 96, no. 13, pp. 4328–4334, 2000. View at Google Scholar · View at Scopus
  91. M. Hamada, Y. Yakushijin, M. Ohtsuka, M. Kakimoto, M. Yasukawa, and S. Fujita, “Aurora2/BTAK/STK15 is involved in cell cycle checkpoint and cell survival of aggressive non-Hodgkin's lymphoma,” British Journal of Haematology, vol. 121, no. 3, pp. 439–447, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. K. K. Hoyer, M. Pang, D. Gui et al., “An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas,” American Journal of Pathology, vol. 164, no. 3, pp. 893–902, 2004. View at Google Scholar · View at Scopus
  93. A. W. Opipari Jr., M. S. Boguski, and V. M. Dixit, “The A20 cDNA induced by tumor necrosis factor α encodes a novel type of zinc finger protein,” Journal of Biological Chemistry, vol. 265, no. 25, pp. 14705–14708, 1990. View at Google Scholar · View at Scopus
  94. H. Y. Song, M. Rothe, and D. V. Goeddel, “The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6721–6725, 1996. View at Publisher · View at Google Scholar · View at Scopus
  95. E. G. Lee, D. L. Boone, S. Chai et al., “Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice,” Science, vol. 289, no. 5488, pp. 2350–2354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Heyninck and R. Beyaert, “A20 inhibits NF-κB activation by dual ubiquitin-editing functions,” Trends in Biochemical Sciences, vol. 30, no. 1, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. B. A. Malynn and A. Ma, “A20 takes on tumors: tumor suppression by an ubiquitin-editing enzyme,” Journal of Experimental Medicine, vol. 206, no. 5, pp. 977–980, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. S. G. Hymowitz and I. E. Wertz, “A20: from ubiquitin editing to tumour suppression,” Nature Reviews Cancer, vol. 10, no. 5, pp. 332–341, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. K. Honma, S. Tsuzuki, M. Nakagawa et al., “TNFAIP3 is the target gene of chromosome band 6q23.3-q24.1 loss in ocular adnexal marginal zone B cell lymphoma,” Genes Chromosomes and Cancer, vol. 47, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. K. Honma, S. Tsuzuki, M. Nakagawa et al., “TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas,” Blood, vol. 114, no. 12, pp. 2467–2475, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. M. Kato, M. Sanada, I. Kato et al., “Frequent inactivation of A20 in B-cell lymphomas,” Nature, vol. 459, no. 7247, pp. 712–716, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. M. Compagno, W. K. Lim, A. Grunn et al., “Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma,” Nature, vol. 459, no. 7247, pp. 717–721, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. K. Parvatiyar and E. W. Harhaj, “Regulation of inflammatory and antiviral signaling by A20,” Microbes and Infection, vol. 13, no. 3, pp. 209–215, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. K. Parvatiyar, G. N. Barber, and E. W. Harhaj, “TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases,” Journal of Biological Chemistry, vol. 285, no. 20, pp. 14999–15009, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. R. M. Tavares, E. E. Turer, C. L. Liu et al., “The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity,” Immunity, vol. 33, no. 2, pp. 181–191, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. L. Verstrepen, K. Verhelst, G. van Loo, I. Carpentier, S. C. Ley, and R. Beyaert, “Expression, biological activities and mechanisms of action of A20 (TNFAIP3),” Biochemical Pharmacology, vol. 80, no. 12, pp. 2009–2020, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. H. Nguyen, S. Sankaran, and S. Dandekar, “Hepatitis C virus core protein induces expression of genes regulating immune evasion and anti-apoptosis in hepatocytes,” Virology, vol. 354, no. 1, pp. 58–68, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. G. Germanidis, C. Haioun, J. Pourquier et al., “Hepatitis C virus infection in patients with overt B-cell non-Hodgkin's lymphoma in a French center,” Blood, vol. 93, no. 5, pp. 1778–1779, 1999. View at Google Scholar · View at Scopus
  109. J. D. Collier, B. Zanke, M. Moore et al., “No association between hepatitis C and B-cell lymphoma,” Hepatology, vol. 29, no. 4, pp. 1259–1261, 1999. View at Google Scholar · View at Scopus
  110. C. Udomsakdi-Auewarakul, P. Auewarakul, S. Sukpanichnant, and W. Muangsup, “Hepatitis C virus infection in patients with non-Hodgkin lymphoma in Thailand,” Blood, vol. 95, no. 11, pp. 3640–3641, 2000. View at Google Scholar · View at Scopus
  111. L. Dal Maso and S. Franceschi, “Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 11, pp. 2078–2085, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus