Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2012, Article ID 478164, 8 pages
http://dx.doi.org/10.1155/2012/478164
Review Article

Through the Looking Glass: Visualizing Leukemia Growth, Migration, and Engraftment Using Fluorescent Transgenic Zebrafish

1Department of Pathology and Cancer Center, Massachusetts General Hospital, Building 149, Charlestown, MA 02129, USA
2Harvard Stem Cell Institute, Holyoke Center, Suite 727W, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
3Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 0330, Boston, MA 02115, USA

Received 15 March 2012; Accepted 23 May 2012

Academic Editor: Elspeth Payne

Copyright © 2012 Finola E. Moore and David M. Langenau. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Blackburn, S. Liu, D. M. Raiser et al., “Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency,” Leukemia. In press.
  2. H. E. Sabaawy, M. Azuma, L. J. Embree, H. J. Tsai, M. F. Starost, and D. D. Hickstein, “TEL-AML1 transgenic zebrafish model of precursor B cell lymphoblastic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 41, pp. 15166–15171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Le, D. M. Langenau, M. D. Keefe, J. L. Kutok, D. S. Neuberg, and L. I. Zon, “Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 22, pp. 9410–9415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. J. Yeh, K. M. Munson, Y. L. Chao, Q. P. Peterson, C. A. MacRae, and R. T. Peterson, “AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression,” Development, vol. 135, no. 2, pp. 401–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Langenau, H. Feng, S. Berghmans, J. P. Kanki, J. L. Kutok, and A. T. Look, “Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 17, pp. 6068–6073, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Chen, C. Jette, J. P. Kanki, J. C. Aster, A. T. Look, and J. D. Griffin, “NOTCH1-induced T-cell leukemia in transgenic zebrafish,” Leukemia, vol. 21, no. 3, pp. 462–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Langenau, D. Traver, A. A. Ferrando et al., “Myc-induced T cell leukemia in transgenic zebrafish,” Science, vol. 299, no. 5608, pp. 887–890, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Swerdlow, International Agency for Research on Cancer, World Health Organization. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, International Agency for Research on Cancer, Lyon, France, 2008.
  9. A. Gutierrez, R. Grebliunaite, H. Feng et al., “Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia,” Journal of Experimental Medicine, vol. 208, no. 18, pp. 1595–1603, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Feng, D. L. Stachura, R. M. White et al., “T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation,” Cancer Cell, vol. 18, no. 4, pp. 353–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. Frazer, N. D. Meeker, L. Rudner et al., “Heritable T-cell malignancy models established in a zebrafish phenotypic screen,” Leukemia, vol. 23, no. 10, pp. 1825–1835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Zhuravleva, J. Paggetti, L. Martin et al., “MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish,” British Journal of Haematology, vol. 143, no. 3, pp. 378–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. Forrester, C. Grabher, E. R. Mcbride et al., “NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis,” British Journal of Haematology, vol. 155, no. 2, pp. 167–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. L. Kalev-Zylinska, J. A. Horsfield, M. V. C. Flores et al., “Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX-1-CBF2T1 transgene advances a model for studies of leukemogenesis,” Development, vol. 129, no. 8, pp. 2015–2030, 2002. View at Google Scholar · View at Scopus
  15. S. M. N. Onnebo, M. M. Condron, D. O. McPhee, G. J. Lieschke, and A. C. Ward, “Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion,” Experimental Hematology, vol. 33, no. 2, pp. 182–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. W. Park, J. M. Davison, J. Rhee, R. H. Hruban, A. Maitra, and S. D. Leach, “Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas,” Gastroenterology, vol. 134, no. 7, pp. 2080–2090, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. T. Nguyen, A. Emelyanov, C. H. Koh et al., “A high level of liver-specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish,” Disease Models & Mechanisms, vol. 4, pp. 801–813, 2011. View at Google Scholar
  18. E. E. Patton and L. I. Zon, “Taking human cancer genes to the fish: a transgenic model of melanoma in zebrafish,” Zebrafish, vol. 1, no. 4, pp. 363–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Santoriello, E. Gennaro, V. Anelli et al., “Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish,” PloS ONE, vol. 5, no. 12, Article ID e15170, 2010. View at Google Scholar · View at Scopus
  20. M. Dovey, R. M. White, and L. I. Zon, “Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish,” Zebrafish, vol. 6, no. 4, pp. 397–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. M. Langenau, M. D. Keefe, N. Y. Storer et al., “Effects of RAS on the genesis of embryonal rhabdomyosarcoma,” Genes and Development, vol. 21, no. 11, pp. 1382–1395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D. M. Langenau, M. D. Keefe, N. Y. Storer et al., “Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic zebrafish,” Oncogene, vol. 27, no. 30, pp. 4242–4248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. C. H. Smith, A. R. Raimondi, C. D. Salthouse et al., “High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia,” Blood, vol. 115, no. 16, pp. 3296–3303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. S. Blackburn, S. Liu, A. R. Raimondi, M. S. Ignatius, C. D. Salthouse, and D. M. Langenau, “High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope,” Nature Protocols, vol. 6, no. 2, pp. 229–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Traver, B. H. Paw, K. D. Poss, W. T. Penberthy, S. Lin, and L. I. Zon, “Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants,” Nature Immunology, vol. 4, no. 12, pp. 1238–1246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. R. M. White, A. Sessa, C. Burke et al., “Transparent adult zebrafish as a tool for in vivo transplantation analysis,” Cell Stem Cell, vol. 2, no. 2, pp. 183–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Zhang, C. Alt, P. Li, R. M. White, and L. I. Zon, “An optical platform for cell tracking in adult zebrafish,” Cytometry Part A, vol. 81, pp. 176–182.
  28. D. Traver, A. Winzeler, H. M. Stern et al., “Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation,” Blood, vol. 104, no. 5, pp. 1298–1305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. I. V. Mizgireuv and S. Y. Revskoy, “Transplantable tumor lines generated in clonal zebrafish,” Cancer Research, vol. 66, no. 6, pp. 3120–3125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Mizgirev and S. Revskoy, “Generation of clonal zebrafish lines and transplantable hepatic tumors,” Nature Protocols, vol. 5, no. 3, pp. 383–394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. I. V. Mizgirev and S. Revskoy, “A new zebrafish model for experimental leukemia therapy,” Cancer Biology and Therapy, vol. 9, no. 11, pp. 895–903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Hall, M. Flores, T. Storm, K. Crosier, and P. Crosier, “The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish,” BMC Developmental Biology, vol. 7, article 42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Y. Zhang and A. R. F. Rodaway, “SCL-GFP transgenic zebrafish: in vivo imaging of blood and endothelial development and identification of the initial site of definitive hematopoiesis,” Developmental Biology, vol. 307, no. 2, pp. 179–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Redd, G. Kelly, G. Dunn, M. Way, and P. Martin, “Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation,” Cell Motility and the Cytoskeleton, vol. 63, no. 7, pp. 415–422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Murayama, K. Kissa, A. Zapata et al., “Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development,” Immunity, vol. 25, no. 6, pp. 963–975, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Y. Bertrand, A. D. Kim, S. Teng, and D. Traver, “CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis,” Development, vol. 135, no. 10, pp. 1853–1862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Kissa, E. Murayama, A. Zapata et al., “Live imaging of emerging hematopoietic stem cells and early thymus colonization,” Blood, vol. 111, no. 3, pp. 1147–1156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Y. Bertrand, N. C. Chi, B. Santoso, S. Teng, D. Y. R. Stainier, and D. Traver, “Haematopoietic stem cells derive directly from aortic endothelium during development,” Nature, vol. 464, no. 7285, pp. 108–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Y. N. Lam, C. J. Hall, P. S. Crosier, K. E. Crosier, and M. V. Flores, “Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells,” Blood, vol. 116, no. 6, pp. 909–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Kissa and P. Herbomel, “Blood stem cells emerge from aortic endothelium by a novel type of cell transition,” Nature, vol. 464, no. 7285, pp. 112–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Hall, M. V. Flores, K. Crosier, and P. Crosier, “Live cell imaging of zebrafish leukocytes,” Methods in Molecular Biology, vol. 546, pp. 255–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. D. M. Langenau, A. A. Ferrando, D. Traver et al., “In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 19, pp. 7369–7374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. P. B. Gupta, S. Mani, J. Yang, K. Hartwell, and R. A. Weinberg, “The evolving portrait of cancer metastasis,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 291–297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. D. M. Langenau, C. Jette, S. Berghmans et al., “Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish,” Blood, vol. 105, no. 8, pp. 3278–3285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Bonnet and J. E. Dick, “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Medicine, vol. 3, no. 7, pp. 730–737, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Lapidot, C. Sirard, J. Vormoor et al., “A cell initiating human acute myeloid leukaemia after transplantation into SCID mice,” Nature, vol. 367, no. 6464, pp. 645–648, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Gerby, E. Clappier, F. Armstrong et al., “Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations,” Leukemia, vol. 25, pp. 1249–1258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Clappier, B. Gerby, F. Sigaux et al., “Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse,” Journal of Experimental Medicine, vol. 208, no. 4, pp. 653–661, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. L. A. Rudner, K. H. Brown, K. P. Dobrinski et al., “Shared acquired genomic changes in zebrafish and human T-ALL,” Oncogene, vol. 30, pp. 4289–4296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. M. S. C. C. Ignatius , N. M. Elpek, A. Fuller et al., “in vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma,” Cancer Cell, vol. 21, no. 5, pp. 680–693, 2012. View at Google Scholar
  51. D. P. Corkery, G. Dellaire, and J. N. Berman, “Leukaemia xenotransplantation in zebrafish—chemotherapy response assay in vivo,” British Journal of Haematology, vol. 153, no. 6, pp. 786–789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. A. M. Cock-Rada, S. Medjkane, N. Janski, N. Yousfi, and M. Perichon, “SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9,” Cancer Research, vol. 72, pp. 810–820, 2012. View at Google Scholar
  53. B. E. Lally, G. A. Geiger, S. Kridel et al., “Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library,” Cancer Research, vol. 67, no. 18, pp. 8791–8799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. L. M. J. Lee, E. A. Seftor, G. Bonde, R. A. Cornell, and M. J. C. Hendrix, “The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation,” Developmental Dynamics, vol. 233, no. 4, pp. 1560–1570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. I. J. Marques, F. U. Weiss, D. H. Vlecken et al., “Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model,” BMC Cancer, vol. 9, article 128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Zhao, X. Wang, Y. Zhao et al., “A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors,” PLoS ONE, vol. 6, no. 7, Article ID e21768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Zhang, Z. Cao, H. Tian et al., “SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo,” Clinical Cancer Research, vol. 17, no. 13, pp. 4439–4450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. V. P. Ghotra, S. He, H. de Bont et al., “Automated whole animal bio-imaging assay for human cancer dissemination,” PloS ONE, vol. 7, Article ID e31281, 2012. View at Google Scholar
  59. S. He, G. E. Lamers, J. W. Beenakker, C. Cui, V. P. Ghotra et al., “Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model,” The Journal of Pathology. In press.
  60. A. Eguiara, O. Holgado, I. Beloqui, L. Abalde, and Y. Sanchez, “Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification,” Cell Cycle, vol. 10, pp. 3751–3757, 2011. View at Google Scholar
  61. M. S. Ignatius and D. M. Langenau, “Fluorescent imaging of cancer in Zebrafish,” Methods in Cell Biology, vol. 105, pp. 437–459, 2011. View at Publisher · View at Google Scholar · View at Scopus