Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2013 (2013), Article ID 176418, 12 pages
http://dx.doi.org/10.1155/2013/176418
Review Article

Management of Adenovirus in Children after Allogeneic Hematopoietic Stem Cell Transplantation

1Molecular Immunology Unit, UCL Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
2Department of Clinical Immunology, Great Ormond Street Hospital, London WC1N 3JH, UK

Received 26 July 2013; Accepted 6 September 2013

Academic Editor: Mark R. Litzow

Copyright © 2013 Winnie WY Ip and Waseem Qasim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. P. Rowe, R. J. Huebner, L. K. Gilmore et al., “Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture,” Proceedings of the Society for Experimental Biology and Medicine, vol. 84, no. 3, pp. 570–573, 1953. View at Google Scholar
  2. T. Walls, A. G. Shankar, and D. Shingadia, “Adenovirus: an increasingly important pathogen in paediatric bone marrow transplant patients,” The Lancet Infectious Diseases, vol. 3, no. 2, pp. 79–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Heim, “Advances in the management of disseminated adenovirus disease in stem cell transplant recipients: impact of adenovirus load (DNAemia) testing,” Expert Review of Anti-Infective Therapy, vol. 9, no. 11, pp. 943–945, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Lion, R. Baumgartinger, F. Watzinger et al., “Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease,” Blood, vol. 102, no. 3, pp. 1114–1120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Kojaoghlanian, P. Flomenberg, and M. S. Horwitz, “The impact of adenovirus infection on the immunocompromised host,” Reviews in Medical Virology, vol. 13, no. 3, pp. 155–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Robinson, G. Singh, J. Y. Lee et al., “Molecular evolution of human adenoviruses,” Scientific Reports, vol. 3, p. 1812, 2013. View at Google Scholar
  7. J. C. Hierholzer, “Adenoviruses in the immunocompromised host,” Clinical Microbiology Reviews, vol. 5, no. 3, pp. 262–274, 1992. View at Google Scholar · View at Scopus
  8. L. Lenaerts, E. De Clercq, and L. Naesens, “Clinical features and treatment of adenovirus infections,” Reviews in Medical Virology, vol. 18, no. 6, pp. 357–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. I. A. Toogood, J. Crompton, and R. T. Hay, “Antipeptide antisera define neutralizing epitopes on the adenovirus hexon,” Journal of General Virology, vol. 73, no. 6, pp. 1429–1435, 1992. View at Google Scholar · View at Scopus
  10. H. Gahéry-Ségard, F. Farace, D. Godfrin et al., “Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity,” Journal of Virology, vol. 72, no. 3, pp. 2388–2397, 1998. View at Google Scholar · View at Scopus
  11. S. M. Sumida, D. M. Truitt, A. A. C. Lemckert et al., “Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein,” Journal of Immunology, vol. 174, no. 11, pp. 7179–7185, 2005. View at Google Scholar · View at Scopus
  12. S. M. Sumida, D. M. Truitt, M. G. Kishko et al., “Neutralizing antibodies and CD8+ T lymphocytes both contribute to immunity to adenovirus serotype 5 vaccine vectors,” Journal of Virology, vol. 78, no. 6, pp. 2666–2673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Heemskerk, A. C. Lankester, T. Van Vreeswijk et al., “Immune reconstitution and clearance of human adenovirus viremia in pediatric stem-cell recipients,” Journal of Infectious Diseases, vol. 191, no. 4, pp. 520–530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Legrand, D. Berrebi, N. Houhou et al., “Early diagnosis of adenovirus infection and treatment with cidofovir after bone marrow transplantation in children,” Bone Marrow Transplantation, vol. 27, no. 6, pp. 621–626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Ljungman, “Treatment of adenovirus infections in the immunocompromised host,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 23, no. 8, pp. 583–588, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Flomenberg, V. Piaskowski, R. L. Truitt, and J. T. Casper, “Characterization of human proliferative T cell responses to adenovirus,” Journal of Infectious Diseases, vol. 171, no. 5, pp. 1090–1096, 1995. View at Google Scholar · View at Scopus
  17. C. A. Smith, L. S. Woodruff, G. R. Kitchingman, and C. M. Rooney, “Adenovirus-pulsed dendritic cells stimulate human virus-specific T-cell responses in vitro,” Journal of Virology, vol. 70, no. 10, pp. 6733–6740, 1996. View at Google Scholar · View at Scopus
  18. C. A. Smith, L. S. Woodruff, C. Rooney, and G. R. Kitchingman, “Extensive cross-reactivity of adenovirus-specific cytotoxic T cells,” Human Gene Therapy, vol. 9, no. 10, pp. 1419–1427, 1998. View at Google Scholar · View at Scopus
  19. B. Heemskerk, L. A. Veltrop-Duits, T. Van Vreeswijk et al., “Extensive cross-reactivity of CD4+ adenovirus-specific T cells: implications for immunotherapy and gene therapy,” Journal of Virology, vol. 77, no. 11, pp. 6562–6566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Olive, L. Eisenlohr, N. Flomenberg, S. Hsu, and P. Flomenberg, “The adenovirus capsid protein hexon contains a highly conserved human CD4+ T-cell epitope,” Human Gene Therapy, vol. 13, no. 10, pp. 1167–1178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Leen, U. Sili, E. F. Vanin et al., “Conserved CTL epitopes on the adenovirus hexon protein expand subgroup cross-reactive and subgroup-specific CD8+ T cells,” Blood, vol. 104, no. 8, pp. 2432–2440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Tang, M. Olive, R. Pulmanausahakul et al., “Human CD8+ cytotoxic T cell responses to adenovirus capsid proteins,” Virology, vol. 350, no. 2, pp. 312–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Tang, M. Olive, K. Champagne et al., “Adenovirus hexon T-cell epitope is recognized by most adults and is restricted by HLA DP4, the most common class II allele,” Gene Therapy, vol. 11, no. 18, pp. 1408–1415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Leen, A. Christin, M. Khalil et al., “Identification of hexon-specific CD4 and CD8 T-cell epitopes for vaccine and immunotherapy,” Journal of Virology, vol. 82, no. 1, pp. 546–554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. Zandvliet, J. H. F. Falkenburg, E. van Liempt et al., “Combined CD8+ and CD4+ adenovirus hexon-specific T cells associated with viral clearance after stem cell transplantation as treatment for adenovirus infection,” Haematologica, vol. 95, no. 11, pp. 1943–1951, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. A. Hale, H. E. Heslop, R. A. Krance et al., “Adenovirus infection after pediatric bone marrow transplantation,” Bone Marrow Transplantation, vol. 23, no. 3, pp. 277–282, 1999. View at Google Scholar · View at Scopus
  27. D. R. Carrigan, “Adenovirus infections in immunocompromised patients,” American Journal of Medicine, vol. 102, no. 3A, pp. 71–74, 1997. View at Google Scholar · View at Scopus
  28. A. F. Shields, R. C. Hackman, and K. H. Fife, “Adenovirus infections in patients undergoing bone marrow transplantation,” The New England Journal of Medicine, vol. 312, no. 9, pp. 529–533, 1985. View at Google Scholar · View at Scopus
  29. P. Flomenberg, J. Babbitt, W. R. Drobyski et al., “Increasing incidence of adenovirus disease in bone marrow transplant recipients,” Journal of Infectious Diseases, vol. 169, no. 4, pp. 775–781, 1994. View at Google Scholar · View at Scopus
  30. D. S. Howard, G. L. Phillips II, D. E. Reece et al., “Adenovirus infections in hematopoietic stem cell transplant recipients,” Clinical Infectious Diseases, vol. 29, no. 6, pp. 1494–1501, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Baldwin, H. Kingman, M. Darville et al., “Outcome and clinical course of 100 patients with adenovirus infection following bone marrow transplantation,” Bone Marrow Transplantation, vol. 26, no. 12, pp. 1333–1338, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Runde, S. Ross, R. Trenschel et al., “Adenoviral infection after allogeneic stem cell transplantation (SCT): report on 130 patients from a single SCT unit involved in a prospective multi center surveillance study,” Bone Marrow Transplantation, vol. 28, no. 1, pp. 51–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Kampmann, D. Cubitt, T. Walls et al., “Improved outcome for children with disseminated adenoviral infection following allogeneic stem cell transplantation,” British Journal of Haematology, vol. 130, no. 4, pp. 595–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Chakrabarti, V. Mautner, H. Osman et al., “Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery,” Blood, vol. 100, no. 5, pp. 1619–1627, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Feuchtinger, J. Lücke, K. Hamprecht et al., “Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation,” British Journal of Haematology, vol. 128, no. 4, pp. 503–509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Hiwarkar, H. B. Gaspar, K. Gilmour et al., “Impact of viral reactivations in the era of pre-emptive antiviral drug therapy following allogeneic haematopoietic SCT in paediatric recipients,” Bone Marrow Transplant, vol. 48, no. 6, pp. 803–808, 2013. View at Publisher · View at Google Scholar
  37. F. M. Munoz, P. A. Piedra, and G. J. Demmler, “Disseminated adenovirus disease in immunocompromised and immunocompetent children,” Clinical Infectious Diseases, vol. 27, no. 5, pp. 1194–1200, 1998. View at Google Scholar · View at Scopus
  38. T. Feuchtinger, C. Richard, M. Pfeiffer et al., “Adenoviral infections after transplantation of positive selected stem cells from haploidentical donors in children: an update,” Klinische Padiatrie, vol. 217, no. 6, pp. 339–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Erard, M.-L. Huang, J. Ferrenberg et al., “Quantitative real-time polymerase chain reaction for detection of adenovirus after T cell-replete hematopoietic cell transplantation: viral load as a marker for invasive disease,” Clinical Infectious Diseases, vol. 45, no. 8, pp. 958–965, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. W. Schilham, E. C. Claas, W. Van Zaane et al., “High levels of adenovirus DNA in serum correlate with fatal outcome of adenovirus infection in children after allogeneic stem-cell transplantation,” Clinical Infectious Diseases, vol. 35, no. 5, pp. 526–532, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. R. S. Sellar and K. S. Peggs, “Management of multidrug-resistant viruses in the immunocompromised host,” British Journal of Haematology, vol. 156, no. 5, pp. 559–572, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Hoffman, A. J. Shah, L. A. Ross, and N. Kapoor, “Adenoviral infections and a prospective trial of cidofovir in pediatric hematopoietic stem cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 7, no. 7, pp. 388–394, 2001. View at Google Scholar · View at Scopus
  43. P. Bordigoni, A.-S. Carret, V. Venard, F. Witz, and A. L. Faou, “Treatment of adenovirus infections in patients undergoing allogeneic hematopoietic stem cell transplantation,” Clinical Infectious Diseases, vol. 32, no. 9, pp. 1290–1297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Ljungman, P. Ribaud, M. Eyrich et al., “Cidofovir for adenovirus infections after allogeneic hematopoietic stem cell transplantation: a survey by the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation,” Bone Marrow Transplantation, vol. 31, no. 6, pp. 481–486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. U. Yusuf, G. A. Hale, J. Carr et al., “Cidofovir for the treatment of adenoviral infection in pediatric hematopoietic stem cell transplant patients,” Transplantation, vol. 81, no. 10, pp. 1398–1404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Neofytos, A. Ojha, B. Mookerjee et al., “Treatment of adenovirus disease in stem cell transplant recipients with cidofovir,” Biology of Blood and Marrow Transplantation, vol. 13, no. 1, pp. 74–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. A. Lindemans, A. M. Leen, and J. J. Boelens, “How I treat adenovirus in hematopoietic stem cell transplant recipients,” Blood, vol. 116, no. 25, pp. 5476–5485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. A. Lacy, M. J. M. Hitchcock, W. A. Lee, P. Tellier, and K. C. Cundy, “Effect of oral probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in cynomolgus monkeys,” Toxicological Sciences, vol. 44, no. 2, pp. 97–106, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Morfin, S. Dupuis-Girod, E. Frobert et al., “Differential susceptibility of adenovirus clinical isolates to cidofovir and ribavirin is not related to species alone,” Antiviral Therapy, vol. 14, no. 1, pp. 55–61, 2009. View at Google Scholar · View at Scopus
  50. A. C. Lankester, B. Heemskerk, E. C. J. Claas et al., “Effect of ribavirin on the plasma viral DNA load in patients with disseminating adenovirus infection,” Clinical Infectious Diseases, vol. 38, no. 11, pp. 1521–1525, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. D. F. Florescu, S. A. Pergam, M. N. Neely et al., “Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised patients,” Biology of Blood and Marrow Transplantation, vol. 18, no. 5, pp. 731–738, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. E. B. Papadopoulos, M. Ladanyi, D. Emanuel et al., “Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation,” The New England Journal of Medicine, vol. 330, no. 17, pp. 1185–1191, 1994. View at Publisher · View at Google Scholar · View at Scopus
  53. E. A. Walter, P. D. Greenberg, M. J. Gilbert et al., “Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor,” The New England Journal of Medicine, vol. 333, no. 16, pp. 1038–1044, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Hromas, K. Cornetta, E. Srour, C. Blanke, and E. R. Broun, “Donor leukocyte infusion as therapy of life-threatening adenoviral infections after T-cell-depleted bone marrow transplantation,” Blood, vol. 84, no. 5, pp. 1689–1690, 1994. View at Google Scholar · View at Scopus
  55. C. M. Bollard, I. Kuehnle, A. Leen, C. M. Rooney, and H. E. Heslop, “Adoptive immunotherapy for posttransplantation viral infections,” Biology of Blood and Marrow Transplantation, vol. 10, no. 3, pp. 143–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. A. M. Leen and C. M. Rooney, “Adenovirus as an emerging pathogen in immunocompromised patients,” British Journal of Haematology, vol. 128, no. 2, pp. 135–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. M. Leen, G. D. Myers, C. M. Bollard et al., “T-cell immunotherapy for adenoviral infections of stem-cell transplant recipients,” Annals of the New York Academy of Sciences, vol. 1062, pp. 104–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. A. M. Leen, T. Tripic, and C. M. Rooney, “Challenges of T cell therapies for virus-associated diseases after hematopoietic stem cell transplantation,” Expert Opinion on Biological Therapy, vol. 10, no. 3, pp. 337–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. M. Leen, U. Sili, B. Savoldo et al., “Fiber-modified adenoviruses generate subgroup cross-reactive, adenovirus-specific cytotoxic T lymphocytes for therapeutic applications,” Blood, vol. 103, no. 3, pp. 1011–1019, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Qasim, K. Gilmour, H. Zhan et al., “Interferon-gamma capture T cell therapy for persistent Adenoviraemia following allogeneic haematopoietic stem cell transplantation,” British Journal of Haematology, vol. 161, no. 3, pp. 449–452, 2013. View at Google Scholar
  61. L. Aïssi-Rothe, V. Decot, V. Venard et al., “Rapid generation of full clinical-grade human antiadenovirus cytotoxic t cells for adoptive immunotherapy,” Journal of Immunotherapy, vol. 33, no. 4, pp. 414–424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. A. M. Leen, G. D. Myers, U. Sili et al., “Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals,” Nature Medicine, vol. 12, no. 10, pp. 1160–1166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Fujita, C. M. Rooney, and H. E. Heslop, “Adoptive cellular immunotherapy for viral diseases,” Bone Marrow Transplantation, vol. 41, no. 2, pp. 193–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A. M. Leen, A. Christin, G. D. Myers et al., “Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation,” Blood, vol. 114, no. 19, pp. 4283–4292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. M. Leen, C. M. Bollard, A. M. Mendizabal et al., “Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation,” Blood, vol. 121, no. 26, pp. 5113–5123, 2013. View at Google Scholar
  66. T. Feuchtinger, P. Lang, K. Hamprecht et al., “Isolation and expansion of human adenovirus-specific CD4+ and CD8+ T cells according to IFN-γ secretion for adjuvant immunotherapy,” Experimental Hematology, vol. 32, no. 3, pp. 282–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Feuchtinger, S. Matthes-Martin, C. Richard et al., “Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation,” British Journal of Haematology, vol. 134, no. 1, pp. 64–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. U. Gerdemann, U. L. Katari, A. Papadopoulou et al., “Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for Adenovirus, EBV and CMV infections after allogeneic hematopoietic stem cell transplant,” Molecular Therapy, 2013. View at Publisher · View at Google Scholar
  69. I. Chatziandreou, K. C. Gilmour, A.-M. McNicol et al., “Capture and generation of adenovirus specific T cells for adoptive immunotherapy,” British Journal of Haematology, vol. 136, no. 1, pp. 117–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. W. Qasim, S. Derniame, K. Gilmour et al., “Third-party virus-specific T cells eradicate adenoviraemia but trigger bystander graft-versus-host disease,” British Journal of Haematology, vol. 154, no. 1, pp. 150–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Comoli, M. W. Schilham, S. Basso et al., “T-cell lines specific for peptides of adenovirus hexon protein and devoid of alloreactivity against recipient cells can be obtained from HLA-haploidentical donors,” Journal of Immunotherapy, vol. 31, no. 6, pp. 529–536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. U. Gerdemann, J. F. Vera, C. M. Rooney, and A. M. Leen, “Generation of multivirus-specific T cells to prevent/treat viral infections after allogeneic hematopoietic stem cell transplant,” Journal of Visualized Experiments, no. 51, 2011. View at Google Scholar
  73. U. Gerdemann, J. M. Keirnan, U. L. Katari et al., “Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections,” Molecular Therapy, vol. 20, no. 8, pp. 1622–1632, 2012. View at Google Scholar
  74. N. Khanna, C. Stuehler, B. Conrad et al., “Generation of a multipathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD154,” Blood, vol. 118, no. 4, pp. 1121–1131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Leibold, J. Feucht, A. Halder et al., “Induction of Thelper1-driven antiviral T-cell lines for adoptive immunotherapy is determined by differential expression of IFN-gamma and T-cell activation markers,” Journal of Immunotherapy, vol. 35, no. 9, pp. 661–669, 2012. View at Google Scholar
  76. L. M. Haveman, M. Bierings, M. R. Klein et al., “Selection of perforin expressing CD4+ adenovirus-specific T-cells with artificial antigen presenting cells,” Clinical Immunology, vol. 146, no. 3, pp. 228–239, 2013. View at Google Scholar