Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2013 (2013), Article ID 309637, 11 pages
http://dx.doi.org/10.1155/2013/309637
Review Article

Acquired Myelodysplasia or Myelodysplastic Syndrome: Clearing the Fog

1Professor of Clinical Medicine, Weill-Cornell Medical School and Director, Transitional Residency Program, Houston Methodist Hospital, 6550 Fannin Street, Suite 1001, Houston, TX 77030, USA
2Summit Toxicology, LLP, 1944 Cedaridge Circle, Superior, CO 80026, USA
3Schools of Pharmacy and Public Health, The University of Colorado, Denver, CO 80026, USA

Received 24 June 2013; Accepted 28 August 2013

Academic Editor: Giuseppe G. Saglio

Copyright © 2013 Ethan A. Natelson and David Pyatt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. N. Giagounidis, “Myelodysplasia or myelodysplastic syndrome?” Leukemia Research, vol. 33, no. 8, p. 1019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Lichtman, “Myelodysplasia or myeloneoplasia: thoughts on the nosology of clonal myeloid diseases,” Blood Cells, Molecules, and Diseases, vol. 26, no. 6, pp. 572–581, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Germing, N. Gattermann, M. Aivado, B. Hildebrandt, and C. Aul, “Two types of acquired idiopathic sideroblastic anaemia (AISA): a time-tested distinction,” The British Journal of Haematology, vol. 108, no. 4, pp. 724–728, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Garand, J. Gardais, T. M. Bizet et al., “Heterogeneity of acquired idiopathic sideroblastic anaemia (AISA),” Leukemia Research, vol. 16, no. 5, pp. 463–468, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Malcovati, U. Germing, A. Kuendgen et al., “Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes,” Journal of Clinical Oncology, vol. 25, no. 23, pp. 3503–3510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. D. Irons, S. A. Gross, A. Le et al., “Integrating WHO 2001–2008 criteria for the diagnosis of Myelodysplastic syndrome (MDS): a case-case analysis of benzene exposure,” Chemico-Biological Interactions, vol. 184, no. 1-2, pp. 30–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. Natelson, “Benzene exposure and refractory sideroblastic erythropoiesis: is there an association?” The American Journal of the Medical Sciences, vol. 334, no. 5, pp. 356–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Germing and A. Kundgen, “Prognostic scoring systems in MDS,” Leukemia Research, vol. 36, no. 12, pp. 1463–1469, 2012. View at Publisher · View at Google Scholar
  9. S. Parmentier, J. Schetelig, K. Lorenz et al., “Assessment of dysplastic hematopoiesis: lessons from healthy bone marrow donors,” Haematologica, vol. 97, no. 5, pp. 723–730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. W. Vardiman, “Hematopathological concepts and controversies in the diagnosis and classification of myelodysplastic syndromes,” ASH Education Book, no. 1, pp. 199–204, 2006. View at Google Scholar · View at Scopus
  11. H. L. Fred, Elephant Medicine and More: Musings of a Medical Educator, Mercer University Press, Macon, Ga, USA, 1989.
  12. K. L. Chang, M. R. O'Donnell, M. L. Slovak et al., “Primary myelodysplasia occurring in adults under 50 years old: a clinicopathologic study of 52 patients,” Leukemia, vol. 16, no. 4, pp. 623–631, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Breccia, A. Mengarelli, M. Mancini et al., “Myelodysplastic syndromes in patients under 50 years old: a single institution experience,” Leukemia Research, vol. 29, no. 7, pp. 749–754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Kuendgen, C. Strupp, M. Aivado et al., “Myelodysplastic syndromes in patients younger than age 50,” Journal of Clinical Oncology, vol. 24, no. 34, pp. 5358–5365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Irwin, A. D'Souza, L. Johnson, and J. Carter, “Myelodysplasia in the Wellington region 2002–2007: disease incidence and treatment patterns,” Internal Medicine Journal, vol. 41, no. 5, pp. 399–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. E. Rollison, N. Howlader, M. T. Smith et al., “Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs,” Blood, vol. 112, no. 1, pp. 45–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Germing, C. Aul, C. M. Niemeyer, R. Haas, and J. M. Bennett, “Epidemiology, classification and prognosis of adults and children with myelodysplastic syndromes,” Annals of Hematology, vol. 87, no. 9, pp. 691–699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. A. Natelson and H. L. Fred, “Lead poisoning from cocktail glasses. Observation on 2 patients,” The Journal of the American Medical Association, vol. 236, no. 22, p. 2527, 1976. View at Publisher · View at Google Scholar · View at Scopus
  19. W. N. Rezuke, C. Anderson, W. T. Pastuszak, S. R. Conway, and S. I. Firshein, “Arsenic intoxication presenting as a myelodysplastic syndrome: a case report,” The American Journal of Hematology, vol. 36, no. 4, pp. 291–293, 1991. View at Google Scholar · View at Scopus
  20. H. Gill, W. W. Choi, and Y. L. Kwong, “Refractory anemia with ringed sideroblasts: more than meets the eye,” Journal of Clinical Oncology, vol. 28, no. 32, pp. e654–e655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Koca, Y. Buyukasik, D. Cetiner et al., “Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts,” Leukemia Research, vol. 32, no. 3, pp. 495–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Huff, Y. Keung, M. Thakuri et al., “Copper deficiency causes reversible myelodysplasia,” The American Journal of Hematology, vol. 82, no. 7, pp. 625–630, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Summerfield, F. U. Steinberg, and J. G. Gonzalez, “Morphologic findings in bone marrow precursor cells in zinc-induced copper deficiency anemia,” The American Journal of Clinical Pathology, vol. 97, no. 5, pp. 665–668, 1992. View at Google Scholar · View at Scopus
  24. N. Saini, J. O. Jacobson, S. Jha, V. Saini, and R. Weinger, “The perils of not digging deep enough-uncovering a rare cause of acquired anemia,” The American Journal of Hematology, vol. 87, no. 4, pp. 413–416, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. R. J. Piso, K. Kriz, and M. Desax, “Severe isoniazid related sideroblastic anemia,” Hematology Reviews, vol. 3, no. 1, article e2, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Colella and S. C. Hollensead, “Understanding and recognizing the Pelger-Huët anomaly,” The American Journal of Clinical Pathology, vol. 137, no. 3, pp. 358–366, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Cunningham, M. M. Patnaik, D. E. Hammerschmidt, and G. M. Vercellotti, “Historical perspective and clinical implications of the Pelger-Huët cell,” The American Journal of Hematology, vol. 84, no. 2, pp. 116–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. E. Etzell and E. Wang, “Acquired Pelger-Huët anomaly in association with concomitant tacrolimus and mycophenolate mofetil in a liver transplant patient: a case report and review of the literature,” Archives of Pathology and Laboratory Medicine, vol. 130, no. 1, pp. 93–96, 2006. View at Google Scholar · View at Scopus
  29. E. Wang, E. Boswell, I. Siddiqi et al., “Pseudo-Pelger-Huët anomaly induced by medications: a clinicopathologic study in comparison with myelodysplastic syndrome-related pseudo-Pelger-Huët anomaly,” The American Journal of Clinical Pathology, vol. 135, no. 2, pp. 291–303, 2011. View at Publisher · View at Google Scholar
  30. D. Liu, Z. Chen, Y. Xue et al., “The significance of bone marrow cell morphology and its correlation with cytogenetic features in the diagnosis of MDS-RA patients,” Leukemia Research, vol. 33, no. 8, pp. 1029–1038, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Lv, G. Lin, X. Gao et al., “Case-control study of risk factors of myelodysplastic syndromes according to World Health Organization classification in a Chinese population,” The American Journal of Hematology, vol. 86, no. 2, pp. 163–169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Y. Kristinsson, M. Björkholm, M. Hultcrantz, A. R. Derolf, O. Landgren, and L. R. Goldin, “Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes,” Journal of Clinical Oncology, vol. 29, no. 21, pp. 2897–2903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Zervas, C. G. Geary, and S. Oleesky, “Sideroblastic anemia treated with immunosuppressive therapy,” Blood, vol. 44, no. 1, pp. 117–123, 1974. View at Google Scholar · View at Scopus
  34. P. Fenaux and L. Ades, “How we treat lower-risk myelodysplastic syndromes,” Blood, vol. 121, no. 21, pp. 4280–4286, 2013. View at Publisher · View at Google Scholar
  35. J. Vardiman, “The classification of MDS: from FAB to WHO and beyond,” Leukemia Research, vol. 36, no. 12, pp. 1453–1458, 2012. View at Publisher · View at Google Scholar
  36. M. Cazzola, M. G. Della Porta, E. Travaglino, and L. Malcovati, “Classification and prognostic evaluation of Myelodysplastic syndromes,” Seminars in Oncology, vol. 38, no. 5, pp. 627–634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Voulgarelis, S. Giannouli, K. Ritis, and A. G. Tzioufas, “Myelodysplasia-associated autoimmunity: clinical and pathophysiologic concepts,” European Journal of Clinical Investigation, vol. 34, no. 10, pp. 690–700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Farmakis, E. Polymeropoulos, A. Polonifi et al., “Myelodysplastic syndrome associated with multiple autoimmune disorders,” Clinical Rheumatology, vol. 24, no. 4, pp. 428–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. Ramadan, T. M. Fouad, V. Summa, S. Hasan, and F. Lo-Coco, “Acute myeloid leukemia developing in patients with autoimmune diseases,” Haematologica, vol. 97, no. 6, pp. 805–817, 2012. View at Publisher · View at Google Scholar
  40. M. J. Olnes and E. M. Sloand, “Targeting immune dysregulation in myelodysplastic syndromes,” The Journal of the American Medical Association, vol. 305, no. 8, pp. 814–819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Vignon-Pennamen, C. Juillard, M. Rybojad et al., “Chronic recurrent lymphocytic sweet syndrome as a predictive marker of myelodysplasia: a report of 9 cases,” Archives of Dermatology, vol. 142, no. 9, pp. 1170–1176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. P. R. Cohen, “Sweet's syndrome—a comprehensive review of an acute febrile neutrophilic dermatosis,” Orphanet Journal of Rare Diseases, vol. 2, no. 1, article 34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Enright and W. Miller, “Autoimmune phenomena in patients with myelodysplastic syndromes,” Leukemia and Lymphoma, vol. 24, no. 5-6, pp. 483–489, 1997. View at Google Scholar · View at Scopus
  44. A. G. Tristano, “Acquired amegakaryocytic thrombocytopenic purpura: review of a not very well-defined disorder,” European Journal of Internal Medicine, vol. 16, no. 7, pp. 477–481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Latvala, S. Parkkila, and O. Niemelä, “Excess alcohol consumption is common in patients with cytopenia: studies in blood and bone marrow cells,” Alcoholism: Clinical and Experimental Research, vol. 28, no. 4, pp. 619–624, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. E. A. Natelson, “Pregnancy-induced pancytopenia with cellular bone marrow: distinctive hematologic features,” The American Journal of the Medical Sciences, vol. 332, no. 4, pp. 205–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Li, P. Lin, Y. Ge, and G. Garcia-Manero, “Myelodysplastic syndromes should been renamed as myelodysplastic neoplasms,” Leukemia Research, vol. 37, no. 4, pp. 463–464, 2013. View at Publisher · View at Google Scholar
  48. N. Tanaka, J. S. Kim, J. D. Newell et al., “Rheumatoid arthritis-related lung diseases: CT findings,” Radiology, vol. 232, no. 1, pp. 81–91, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. R. D. Irons, L. Lv, S. A. Gross et al., “Chronic exposure to benzene results in a unique form of dysplasia,” Leukemia Research, vol. 29, no. 12, pp. 1371–1380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Lv, P. Kerzic, G. Lin et al., “The TNF-α 238A polymorphism is associated with susceptibility to persistent bone marrow dysplasia following chronic exposure to benzene,” Leukemia Research, vol. 31, no. 11, pp. 1479–1485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. M. A. Ruiz, L. G. S. Augusto, J. Vassallo, A. C. Vigorito, I. Lorand-Metze, and C. A. Souza, “Bone marrow morphology in patients with neutropenia due to chronic exposure to organic solvents (benzene): early lesions,” Pathology Research and Practice, vol. 190, no. 2, pp. 151–154, 1994. View at Google Scholar · View at Scopus
  52. M. Aksoy, “Different types of malignancies due to occupational exposure to benzene: a review of recent observations in Turkey,” Environmental Research, vol. 23, no. 1, pp. 181–190, 1980. View at Google Scholar · View at Scopus
  53. Z. N. Singh, D. Huo, J. Anastasi et al., “Therapy-related myelodysplastic syndrome: morphologic subclassification may not be clinically relevant,” The American Journal of Clinical Pathology, vol. 127, no. 2, pp. 197–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Song, X. Du, F. Hao et al., “Immunosuppressive therapy of cyclosporin A for severe benzene-induced haematopoietic disorders and a 6-month follow-up,” Chemico-Biological Interactions, vol. 186, no. 1, pp. 96–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Li, X. Liu, L. Nie et al., “Unique cytogenetic features of primary myelodysplastic syndromes in Chinese patients,” Leukemia Research, vol. 33, no. 9, pp. 1194–1198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Cheng, Y. Wang, H. Wang et al., “Cytogenetic profile of de novo acute myeloid leukemia: a study based on 1432 patients in a single institution of China,” Leukemia, vol. 23, no. 10, pp. 1801–1806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Gómez-Almaguer, M. Solano-Genesta, L. Tarín-Arzaga et al., “Low-dose rituximab and alemtuzumab combination therapy for patients with steroid-refractory autoimmune cytopenias,” Blood, vol. 116, no. 23, pp. 4783–4785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. E. A. Natelson, “Myelodysplasia with isolated trisomy 15: a 15-year follow-up without specific therapy,” The American Journal of the Medical Sciences, vol. 331, no. 3, pp. 157–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. E. M. Sloand, “Hypocellular myelodysplasia,” Hematology/Oncology Clinics of North America, vol. 23, no. 2, pp. 347–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. P. K. Epling-Burnette, J. McDaniel, S. Wei, and A. F. List, “Emerging immunosuppressive drugs in myelodysplastic syndromes,” Expert Opinion on Emerging Drugs, vol. 17, no. 4, pp. 519–541, 2012. View at Publisher · View at Google Scholar
  61. A. A. van de Loosdrecht and T. M. Westers, “Cutting edge: flow cytometry in myelodysplastic syndromes,” Journal of the National Comprehensive Cancer Network, vol. 11, no. 7, pp. 892–902, 2013. View at Google Scholar
  62. R. Bejar, R. V. Tiu, M. Sekeres, and R. S. Komrokji, “Myelodysplastic syndromes: recent advancements in risk stratification and unmet therapeutic challenges,” The American Society of Clinical Oncology Educational Book, no. 1, pp. 256–270, 2013. View at Google Scholar
  63. A. Maassen, C. Strupp, A. Giagounidis et al., “Validation and proposals for a refinement of the WHO, 2008 classification of myelodysplastic syndromes without excess of blasts,” Leukemia Research, vol. 37, no. 1, pp. 64–70, 2013. View at Publisher · View at Google Scholar
  64. R. Invernizzi, A. Pecci, L. Bellotti, and E. Ascari, “Expression of p53, Bcl-2 and ras oncoproteins and apoptosis levels in acute leukaemias and myelodysplastic syndromes,” Leukemia and Lymphoma, vol. 42, no. 3, pp. 481–489, 2001. View at Google Scholar · View at Scopus
  65. M. Kitagawa, S. Yamaguchi, M. Takahashi, T. Tanizawa, K. Hirokawa, and R. Kamiyama, “Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia,” Leukemia, vol. 12, no. 4, pp. 486–492, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Orazi, M. Kahsai, K. John, and R. S. Neiman, “p53 Overexpression in myeloid leukemic disorders is associated with increased apoptosis of hematopoietic marrow cells and ineffective hematopoiesis,” Modern Pathology, vol. 9, no. 1, pp. 48–52, 1996. View at Google Scholar · View at Scopus
  67. A. Parcharidou, A. Raza, T. Economopoulos et al., “Extensive apoptosis of bone marrow cells as evaluated by the in situ end-labelling (ISEL) technique may be the basis for ineffective haematopoiesis in patients with myelodysplastic syndromes,” European Journal of Haematology, vol. 62, no. 1, pp. 19–26, 1999. View at Google Scholar · View at Scopus
  68. S. D. Mundle, S. Reza, A. Ali et al., “Correlation of tumor necrosis factor α (TNFα) with high caspase 3-like activity in myelodysplastic syndromes,” Cancer Letters, vol. 140, no. 1-2, pp. 201–207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. J. E. Parker, G. J. Mufti, F. Rasool, A. Mijovic, S. Devereux, and A. Pagliuca, “The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS,” Blood, vol. 96, no. 12, pp. 3932–3938, 2000. View at Google Scholar · View at Scopus
  70. S. D. Mundle, A. Ali, J. D. Cartlidge et al., “Evidence for involvement of tumor necrosis factor-α in apoptotic death of bone marrow cells in myelodysplastic syndromes,” The American Journal of Hematology, vol. 60, no. 1, pp. 36–47, 1999. View at Publisher · View at Google Scholar
  71. S. D. Mundle, V. T. Shetty, and A. Raza, “Is excessive spontaneous intramedullary apoptosis unique to myelodysplasia?” Experimental Hematology, vol. 26, no. 11, pp. 1014–1017, 1998. View at Google Scholar · View at Scopus
  72. A. Raza, S. Gezer, S. Mundle et al., “Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes,” Blood, vol. 86, no. 1, pp. 268–276, 1995. View at Google Scholar · View at Scopus
  73. A. Raza, S. Mundle, A. Iftikhar et al., “Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis,” The American Journal of Hematology, vol. 48, no. 3, pp. 143–154, 1995. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Shetty, S. Mundle, S. Alvi et al., “Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes,” Leukemia Research, vol. 20, no. 11-12, pp. 891–900, 1996. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Aggarwal, A. A. van de Loosdrecht, C. Alhan, G. J. Ossenkoppele, T. M. Westers, and H. J. Bontkes, “Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy,” The British Journal of Haematology, vol. 153, no. 5, pp. 568–581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Bouscary, J. de Vos, M. Guesnu et al., “Fas/Apo-1(CD95) expression and apoptosis in patients with myelodysplastic syndromes,” Leukemia, vol. 11, no. 6, pp. 839–845, 1997. View at Google Scholar · View at Scopus
  77. M. E. D. Chamuleau, T. M. Westers, L. van Dreunen et al., “Immune mediated autologous cytotoxicity against hematopoietic precursor cells in patients with myelodysplastic syndrome,” Haematologica, vol. 94, no. 4, pp. 496–506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. P. K. Epling-Burnette, F. Bai, J. S. Painter et al., “Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors,” Blood, vol. 109, no. 11, pp. 4816–4824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Kitagawa, R. Kamiyama, and T. Kasuga, “Increase in number of bone marrow macrophages in patients with myelodysplastic syndromes,” European Journal of Haematology, vol. 51, no. 1, pp. 56–58, 1993. View at Google Scholar · View at Scopus
  80. J. Wu and L. L. Lanier, “Natural killer cells and cancer,” Advances in Cancer Research, vol. 90, pp. 127–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Wetzler, R. Kurzrock, Z. Estrov, E. Estey, and M. Talpaz, “Cytokine expression in adherent layers from patients with myelodysplastic syndrome and acute myelogenous leukemia,” Leukemia Research, vol. 19, no. 1, pp. 23–34, 1995. View at Publisher · View at Google Scholar · View at Scopus
  82. P. R. Crocker, S. Freeman, S. Gordon, and S. Kelm, “Sialoadhesin binds preferentially to cells of the granulocytic lineage,” Journal of Clinical Investigation, vol. 95, no. 2, pp. 635–643, 1995. View at Google Scholar · View at Scopus
  83. E. M. Sloand and K. Rezvani, “The role of the immune system in myelodysplasia: implications for therapy,” Seminars in Hematology, vol. 45, no. 1, pp. 39–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. P. A. Miescher, H. Favre, and P. Beris, “Autoimmune myelodysplasias,” Seminars in Hematology, vol. 28, no. 4, pp. 322–330, 1991. View at Google Scholar · View at Scopus
  85. M. J. Smyth, G. P. Dunn, and R. D. Schreiber, “Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity,” Advances in Immunology, vol. 90, no. 1, pp. 1–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. L. B. Travis, C. Y. Li, Z. N. Zhang et al., “Hematopoietic malignancies and related disorders among benzene-exposed workers in China,” Leukemia and Lymphoma, vol. 14, no. 1-2, pp. 91–102, 1994. View at Google Scholar · View at Scopus
  87. L. Lv, H. J. Zou, G. W. Lin, and R. R. Irons, “Genetic polymorphism of tumor necrosis factor-alpha in patients with chronic benzene poisoning,” Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, vol. 23, no. 3, pp. 195–198, 2005. View at Google Scholar · View at Scopus
  88. S. Y. Kordasti, B. Afzali, Z. Lim et al., “IL-17-producing CD4+ T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome,” The British Journal of Haematology, vol. 145, no. 1, pp. 64–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Y. Kordasti, W. Ingram, J. Hayden et al., “CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS),” Blood, vol. 110, no. 3, pp. 847–850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. P. J. Kerzic, D. W. Pyatt, J. H. Zheng, S. A. Gross, A. Le, and R. D. Irons, “Inhibition of NF-κB by hydroquinone sensitizes human bone marrow progenitor cells to TNF-α-induced apoptosis,” Toxicology, vol. 187, no. 2-3, pp. 127–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Acquaviva, V. Gelsi-Boyer, and D. Birnbaum, “Myelodysplastic syndromes: lost between two states,” Leukemia, vol. 24, no. 1, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at Scopus