Table of Contents Author Guidelines Submit a Manuscript
Advances in Hematology
Volume 2013, Article ID 949513, 16 pages
http://dx.doi.org/10.1155/2013/949513
Review Article

Dendritic Cell Development: A Choose-Your-Own-Adventure Story

1Division of Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
2Department of Immunology, University of Toronto, Toronto, ON, Canada M5S 1A8

Received 5 November 2012; Accepted 27 December 2012

Academic Editor: Sheila Dias

Copyright © 2013 Amanda J. Moore and Michele K. Anderson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution,” The Journal of Immunology, vol. 137, no. 5, pp. 1142–1162, 1973. View at Google Scholar
  2. D. Vremec, J. Pooley, H. Hochrein, L. Wu, and K. Shortman, “CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen,” The Journal of Immunology, vol. 164, no. 6, pp. 2978–2986, 2000. View at Google Scholar · View at Scopus
  3. A. D. Edwards, D. Chaussabel, S. Tomlinson, O. Schulz, A. Sher, and C. Reis e Sousa, “Relationships among murine CD11chigh dendritic cell subsets as revealed by baseline gene expression patterns,” The Journal of Immunology, vol. 171, no. 1, pp. 47–60, 2003. View at Google Scholar · View at Scopus
  4. F. Eckert and U. Schmid, “Identification of plasmacytoid T cells in lymphoid hyperplasia of the skin,” Archives of Dermatology, vol. 125, no. 11, pp. 1518–1524, 1989. View at Google Scholar · View at Scopus
  5. F. P. Siegal, N. Kadowaki, M. Shodell et al., “The nature of the principal type 1 interferon-producing cells in human blood,” Science, vol. 284, no. 5421, pp. 1835–1837, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. M. den Haan, S. M. Lehar, and M. J. Bevan, “CD8+ but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo,” Journal of Experimental Medicine, vol. 192, no. 12, pp. 1685–1696, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hildner, B. T. Edelson, W. E. Purtha et al., “Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity,” Science, vol. 322, no. 5904, pp. 1097–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Koble and B. Kyewski, “The thymic medulla: a unique microenvironment for intercellular self-antigen transfer,” Journal of Experimental Medicine, vol. 206, no. 7, pp. 1505–1513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Gallegos and M. J. Bevan, “Central tolerance: good but imperfect,” Immunological Reviews, vol. 209, pp. 290–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Brocker, M. Riedinger, and K. Karjalainen, “Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo,” Journal of Experimental Medicine, vol. 185, no. 3, pp. 541–550, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Birnberg, L. Bar-On, A. Sapoznikov et al., “Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome,” Immunity, vol. 29, no. 6, pp. 986–997, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Pulendran, J. Lingappa, M. K. Kennedy et al., “Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice,” The Journal of Immunology, vol. 159, no. 5, pp. 2222–2231, 1997. View at Google Scholar · View at Scopus
  13. D. Dudziak, A. O. Kamphorst, G. F. Heidkamp et al., “Differential antigen processing by dendritic cell subsets in vivo,” Science, vol. 315, no. 5808, pp. 107–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Bogunovic, F. Ginhoux, J. Helft et al., “Origin of the lamina propria dendritic cell network,” Immunity, vol. 31, no. 3, pp. 513–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Merad, F. Ginhoux, and M. Collin, “Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells,” Nature Reviews Immunology, vol. 8, no. 12, pp. 935–947, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Romani, B. E. Clausen, and P. Stoitzner, “Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin,” Immunological Reviews, vol. 234, no. 1, pp. 120–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Collin, V. Bigley, M. Haniffa, and S. Hambleton, “Human dendritic cell deficiency: the missing ID?” Nature Reviews Immunology, vol. 11, no. 9, pp. 575–583, 2011. View at Publisher · View at Google Scholar
  18. A. Dzionek, A. Fuchs, P. Schmidt et al., “BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood,” The Journal of Immunology, vol. 165, no. 11, pp. 6037–6046, 2000. View at Google Scholar · View at Scopus
  19. A. Bachem, S. Güttler, E. Hartung et al., “Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1273–1281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Crozat, R. Guiton, V. Contreras et al., “The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1283–1292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. L. Jongbloed, A. J. Kassianos, K. J. McDonald et al., “Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1247–1260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. F. Poulin, M. Salio, E. Griessinger et al., “Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1261–1271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Brawand, D. R. Fitzpatrick, B. W. Greenfield, K. Brasel, C. R. Maliszewski, and T. De Smedt, “Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs,” The Journal of Immunology, vol. 169, no. 12, pp. 6711–6719, 2002. View at Google Scholar · View at Scopus
  24. M. O'Keeffe, H. Hochrein, D. Vremec et al., “Mouse plasmacytoid cells: Long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus,” Journal of Experimental Medicine, vol. 196, no. 10, pp. 1307–1319, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Luche, L. Ardouin, P. Teo et al., “The earliest intrathymic precursors of CD8α+ thymic dendritic cells correspond to myeloid-type double-negative 1c cells,” European The Journal of Immunology, vol. 41, no. 8, pp. 2165–2175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. P. DeKoter, J. C. Walsh, and H. Singh, “PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors,” EMBO Journal, vol. 17, no. 15, pp. 4456–4468, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. H. L. Pahl, R. J. Scheibe, D. E. Zhang et al., “The proto-oncogene PU. 1 regulates expression of the myeloid-specific CD11b promoter,” The Journal of Biological Chemistry, vol. 268, no. 7, pp. 5014–5020, 1993. View at Google Scholar
  28. Y. Laouar, T. Welte, X. Y. Fu, and R. A. Flavell, “STAT3 is required for Flt3L-dependent dendritic cell differentiation,” Immunity, vol. 19, no. 6, pp. 903–912, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Esashi, Y. H. Wang, O. Perng, X. F. Qin, Y. J. Liu, and S. S. Watowich, “The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8,” Immunity, vol. 28, no. 4, pp. 509–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Kashiwada, N. L. L. Pham, L. L. Pewe, J. T. Harty, and P. B. Rothman, “NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development,” Blood, vol. 117, no. 23, pp. 6193–6197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Tussiwand, W. L. Lee, T. L. Murphy et al., “Compensatory dendritic cell development mediated by BATF-IRF interactions,” Nature, vol. 490, no. 421, pp. 502–507, 2012. View at Publisher · View at Google Scholar
  32. C. J. Spooner, J. X. Cheng, E. Pujadas, P. Laslo, and H. Singh, “A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates,” Immunity, vol. 31, no. 4, pp. 576–586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Yücel, H. Karsunky, L. Klein-Hitpass, and T. Möröy, “The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus,” Journal of Experimental Medicine, vol. 197, no. 7, pp. 831–844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Cisse, M. L. Caton, M. Lehner et al., “Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development,” Cell, vol. 135, no. 1, pp. 37–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. Moore, J. Sarmiento, M. Mohtashami et al., “Transcriptional priming of intrathymic precursors for dendritic cell development,” Development, vol. 139, no. 2, pp. 373–384, 2011. View at Google Scholar
  36. M. Kondo, I. L. Weissman, and K. Akashi, “Identification of clonogenic common lymphoid progenitors in mouse bone marrow,” Cell, vol. 91, no. 5, pp. 661–672, 1997. View at Google Scholar · View at Scopus
  37. K. Akashi, D. Traver, T. Miyamoto, and I. L. Weissman, “A clonogenic common myeloid progenitor that gives rise to all myeloid lineages,” Nature, vol. 404, no. 6774, pp. 193–197, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Traver, K. Akashi, M. Manz et al., “Development of CD8α-positive dendritic cells from a common myeloid progenitor,” Science, vol. 290, no. 5499, pp. 2152–2154, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. M. G. Manz, D. Traver, T. Miyamoto, I. L. Weissman, and K. Akashi, “Dendritic cell potentials of early lymphoid and myeloid progenitors,” Blood, vol. 97, no. 11, pp. 3333–3341, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Wu, A. D'Amico, H. Hochrein, M. O'Keeffe, K. Shortman, and K. Lucas, “Development of thymic and splenic dendritic cell populations from different hemopoietic precursors,” Blood, vol. 98, no. 12, pp. 3376–3382, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Waskow, K. Liu, G. Darrasse-Jèze et al., “The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues,” Nature Immunology, vol. 9, no. 6, pp. 676–683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. D'Amico and L. Wu, “The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3,” Journal of Experimental Medicine, vol. 198, no. 2, pp. 293–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Schlenner, V. Madan, K. Busch et al., “Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus,” Immunity, vol. 32, no. 3, pp. 426–436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. D. K. Fogg, C. Sibon, C. Miled et al., “A clonogenic bone harrow progenitor specific for macrophages and dendritic cells,” Science, vol. 311, no. 5757, pp. 83–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. S. H. Naik, P. Sathe, H. Y. Park et al., “Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo,” Nature Immunology, vol. 8, no. 11, pp. 1217–1226, 2007. View at Google Scholar · View at Scopus
  46. N. Onai, A. Obata-Onai, M. A. Schmid, T. Ohteki, D. Jarrossay, and M. G. Manz, “Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow,” Nature Immunology, vol. 8, no. 11, pp. 1207–1216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Liu, G. D. Victora, T. A. Schwickert et al., “In vivo analysis of dendritic cell development and homeostasis,” Science, vol. 324, no. 5925, pp. 392–397, 2009. View at Google Scholar · View at Scopus
  48. F. Ginhoux, K. Liu, J. Helft et al., “The origin and development of nonlymphoid tissue CD103+ DCs,” Journal of Experimental Medicine, vol. 206, no. 13, pp. 3115–3130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Ardavin, L. Wu, C. L. Li, and K. Shortman, “Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population,” Nature, vol. 362, no. 6422, pp. 761–763, 1993. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Radtke, I. Ferrero, A. Wilson, R. Lees, M. Aguet, and H. R. MacDonald, “Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells,” Journal of Experimental Medicine, vol. 191, no. 7, pp. 1085–1094, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. T. B. Feyerabend, G. Terszowski, A. Tietz et al., “Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms,” Immunity, vol. 30, no. 1, pp. 67–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Donskoy and I. Goldschneider, “Two developmentally distinct populations of dendritic cells inhabit the adult mouse thymus: demonstration by differential importation of hematogenous precursors under steady state conditions,” The Journal of Immunology, vol. 170, no. 7, pp. 3514–3521, 2003. View at Google Scholar · View at Scopus
  53. J. Li, J. Park, D. Foss, and I. Goldschneider, “Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 607–622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Hadeiba, K. Lahl, A. Edalati et al., “Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance,” Immunity, vol. 36, no. 3, pp. 438–450, 2012. View at Publisher · View at Google Scholar
  55. H. T. Petrie and J. C. Zúñiga-Pflücker, “Zoned out: functional mapping of stromal signaling microenvironments in the thymus,” Annual Review of Immunology, vol. 25, no. 1, pp. 649–679, 2007. View at Publisher · View at Google Scholar
  56. A. V. Griffith, M. Fallahi, H. Nakase, M. Gosink, B. Young, and H. T. Petrie, “Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation,” Immunity, vol. 31, no. 6, pp. 999–1009, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Bhandoola, H. von Boehmer, H. T. Petrie, and J. C. Zúñiga-Pflücker, “Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from,” Immunity, vol. 26, no. 6, pp. 678–689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Corcoran, I. Ferrero, D. Vremec et al., “The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells,” The Journal of Immunology, vol. 170, no. 10, pp. 4926–4932, 2003. View at Google Scholar · View at Scopus
  59. S. M. Schlenner and H. R. Rodewald, “Early T cell development and the pitfalls of potential,” Trends in Immunology, vol. 31, no. 8, pp. 303–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. Yui, N. Feng, and E. V. Rothenberg, “Fine-scale staging of T cell lineage commitment in adult mouse thymus,” The Journal of Immunology, vol. 185, no. 1, pp. 284–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Li, M. Leid, and E. V. Rothenberg, “An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b,” Science, vol. 329, no. 5987, pp. 89–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. H. E. Porritt, L. L. Rumfelt, S. Tabrizifard, T. M. Schmitt, J. C. Zúñiga-Pflücker, and H. T. Petrie, “Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages,” Immunity, vol. 20, no. 6, pp. 735–745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Masuda, K. Kakugawa, T. Nakayama, N. Minato, Y. Katsura, and H. Kawamoto, “T cell lineage determination precedes the initiation of TCRβ gene rearrangement,” The Journal of Immunology, vol. 179, no. 6, pp. 3699–3706, 2007. View at Google Scholar · View at Scopus
  64. J. J. Bell and A. Bhandoola, “The earliest thymic progenitors for T cells possess myeloid lineage potential,” Nature, vol. 452, no. 7188, pp. 764–767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Wada, K. Masuda, R. Satoh et al., “Adult T-cell progenitors retain myeloid potential,” Nature, vol. 452, no. 7188, pp. 768–772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Wu, C. L. Li, and K. Shortman, “Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny,” Journal of Experimental Medicine, vol. 184, no. 3, pp. 903–911, 1996. View at Google Scholar · View at Scopus
  67. J. C. Miller, B. D. Brown, T. Shay et al., “Deciphering the transcriptional network of the dendritic cell lineage,” Nature Immunology, vol. 13, no. 9, pp. 888–899, 2012. View at Publisher · View at Google Scholar
  68. J. Medvedovic, A. Ebert, and H. Tagoh, Busslinger M. Pax5: A Master Regulator of B Cell Development and Leukemogenesis, Elsevier, New York, NY, USA, 1st edition, 2011.
  69. S. Carotta, L. Wu, and S. L. Nutt, “Surprising new roles for PU.1 in the adaptive immune response,” Immunological Reviews, vol. 238, no. 1, pp. 63–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. M. K. Anderson, G. Hernandez-Hoyos, R. A. Diamond, and E. V. Rothenberg, “Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage,” Development, vol. 126, no. 14, pp. 3131–3148, 1999. View at Google Scholar · View at Scopus
  71. A. Guerriero, P. B. Langmuir, L. M. Spain, and E. W. Scott, “PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells,” Blood, vol. 95, no. 3, pp. 879–885, 2000. View at Google Scholar · View at Scopus
  72. K. L. Anderson, H. Perkin, C. D. Surh, S. Venturini, R. A. Maki, and B. E. Torbett, “Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells,” The Journal of Immunology, vol. 164, no. 4, pp. 1855–1861, 2000. View at Google Scholar · View at Scopus
  73. A. Dakic, Q. X. Shao, A. D'Amico et al., “Development of the dendritic cell system during mouse ontogeny,” The Journal of Immunology, vol. 172, no. 2, pp. 1018–1027, 2004. View at Google Scholar · View at Scopus
  74. S. Carotta, A. Dakic, A. D'Amico et al., “The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner,” Immunity, vol. 32, no. 5, pp. 628–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. R. P. DeKoter, H. J. Lee, and H. Singh, “PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors,” Immunity, vol. 16, no. 2, pp. 297–309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. R. P. DeKoter and H. Singh, “Regulation of B lymphocyte and macrophage development by graded expression of PU.1,” Science, vol. 288, no. 5470, pp. 1439–1441, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Laslo, C. J. Spooner, A. Warmflash et al., “Multilineage transcriptional priming and determination of alternate hematopoietic cell fates,” Cell, vol. 126, no. 4, pp. 755–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Bakri, S. Sarrazin, U. P. Mayer et al., “Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate,” Blood, vol. 105, no. 7, pp. 2707–2716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. M. K. Anderson, A. H. Weiss, G. Hernandez-Hoyos, C. J. Dionne, and E. V. Rothenberg, “Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage,” Immunity, vol. 16, no. 2, pp. 285–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. L. M. Spain, A. Guerriero, S. Kunjibettu, and E. W. Scott, “T cell development in PU.1-deficient mice,” The Journal of Immunology, vol. 163, no. 5, pp. 2681–2687, 1999. View at Google Scholar · View at Scopus
  81. D. E. Zhang, C. J. Hetherington, H. M. Chen, and D. G. Tenen, “The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor,” Molecular and Cellular Biology, vol. 14, no. 1, pp. 373–381, 1994. View at Google Scholar · View at Scopus
  82. S. Hohaus, M. S. Petrovick, M. T. Voso, Z. Sun, D. Zhang, and D. G. Tenen, “PU.1 (Spi-1) and C/EBPα regulate expression of the granulocyte-macrophage colony-stimulating factor receptor α gene,” Molecular and Cellular Biology, vol. 15, no. 10, pp. 5830–5845, 1995. View at Google Scholar · View at Scopus
  83. J. A. Zhang, A. Mortazavi, B. A. Williams, B. J. Wold, and E. V. Rothenberg, “Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity,” Cell, vol. 149, no. 2, pp. 467–482, 2012. View at Publisher · View at Google Scholar
  84. C. B. Franco, D. D. Scripture-Adams, I. Proekt et al., “Notch/δ signaling constrains reengineering of pro-T cells by PU. 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 11993–11998, 2006. View at Publisher · View at Google Scholar
  85. G. H. Su, H. M. Chen, N. Muthusamy et al., “Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B,” The EMBO Journal, vol. 16, no. 23, pp. 7118–7129, 1997. View at Publisher · View at Google Scholar
  86. R. Dahl, D. L. Ramirez-Bergeron, S. Rao, and M. C. Simon, “Spi-B can functionally replace PU.1 in myeloid but not lymphoid development,” EMBO Journal, vol. 21, no. 9, pp. 2220–2230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Schotte, M. C. Rissoan, N. Bendriss-Vermare et al., “The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development,” Blood, vol. 101, no. 3, pp. 1015–1023, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Schotte, M. Nagasawa, K. Weijer, H. Spits, and B. Blom, “The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development,” Journal of Experimental Medicine, vol. 200, no. 11, pp. 1503–1509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. I. Sasaki, K. Hoshino, T. Sugiyama et al., “Spi-B is critical for plasmacytoid dendritic cell function and development,” Blood, vol. 120, no. 24, pp. 4733–4743, 2012. View at Publisher · View at Google Scholar
  90. J. M. Lefebvre, M. C. Haks, M. O. Carleton et al., “Enforced expression of Spi-B reverses T lineage commitment and blocks beta-selection,” The Journal of Immunology, vol. 174, no. 10, pp. 6184–6194, 2005. View at Google Scholar
  91. L. B. John and A. C. Ward, “The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity,” Molecular Immunology, vol. 48, no. 9-10, pp. 1272–1278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. L. Wu, A. Nichogiannopoulou, K. Shortman, and K. Georgopoulos, “Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage,” Immunity, vol. 7, no. 4, pp. 483–492, 1997. View at Google Scholar · View at Scopus
  93. D. Allman, M. Dalod, C. Asselin-Paturel et al., “Ikaros is required for plasmacytoid dendritic cell differentiation,” Blood, vol. 108, no. 13, pp. 4025–4034, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Nichogiannopoulou, M. Trevisan, S. Neben, C. Friedrich, and K. Georgopoulos, “Defects in hemopoietic stem cell activity in Ikaros mutant mice,” Journal of Experimental Medicine, vol. 190, no. 9, pp. 1201–1214, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. M. A. Zarnegar and E. V. Rothenberg, “Ikaros represses and activates PU.1 cell-type-specifically through the multifunctional Sfpi1 URE and a myeloid specific enhancer,” Oncogene, vol. 31, no. 43, pp. 4647–4654, 2012. View at Publisher · View at Google Scholar
  96. C. Rathinam, R. Geffers, R. Yücel et al., “The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function,” Immunity, vol. 22, no. 6, pp. 717–728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Li, M. Ji, K. D. Klarmann, and J. R. Keller, “Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development,” Blood, vol. 116, no. 7, pp. 1060–1069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Yücel, C. Kosan, F. Heyd, and T. Möröy, “Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development,” The Journal of Biological Chemistry, vol. 279, no. 39, pp. 40906–40917, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. A. T. Satpathy, K. M. Murphy, and K. C. Wumesh, “Transcription factor networks in dendritic cell development,” Seminars in Immunology, vol. 23, no. 5, pp. 388–397, 2011. View at Publisher · View at Google Scholar
  100. M. M. Meredith, K. Liu, G. Darrasse-Jeze et al., “Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage,” Journal of Experimental Medicine, vol. 209, no. 6, pp. 1153–1165, 2012. View at Publisher · View at Google Scholar
  101. A. T. Satpathy, K. C. Wumesh, J. C. Albring et al., “Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages,” Journal of Experimental Medicine, vol. 209, no. 6, pp. 1135–1152, 2012. View at Google Scholar
  102. M. M. Meredith, K. Liu, A. O. Kamphorst et al., “Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state,” Journal of Experimental Medicine, vol. 209, no. 9, pp. 1583–1593, 2012. View at Publisher · View at Google Scholar
  103. C. Deweindt, O. Albagli, F. Bernardin et al., “The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: a novel function for the BTB/POZ domain as an autonomous repressing domain,” Cell Growth and Differentiation, vol. 6, no. 12, pp. 1495–1503, 1995. View at Google Scholar · View at Scopus
  104. O. Albagli, P. Dhordain, F. Bernardin, S. Quief, J. P. Kerckaert, and D. Leprince, “Multiple domains participate in distance-independent LAZ3/BCL6-mediated transcriptional repression,” Biochemical and Biophysical Research Communications, vol. 220, no. 3, pp. 911–915, 1996. View at Publisher · View at Google Scholar · View at Scopus
  105. R. T. Phan and R. Dalla-Favera, “The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells,” Nature, vol. 432, no. 7017, pp. 635–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. A. L. Dent, A. L. Shaffer, X. Yu, D. Allman, and L. M. Staudt, “Control of inflammation, cytokine expression, and germinal center formation by BCL-6,” Science, vol. 276, no. 5312, pp. 589–592, 1997. View at Publisher · View at Google Scholar · View at Scopus
  107. B. H. Ye, G. Cattoretti, Q. Shen et al., “The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation,” Nature Genetics, vol. 16, no. 2, pp. 161–170, 1997. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Shapiro-Shelef and K. C. Calame, “Regulation of plasma-cell development,” Nature Reviews Immunology, vol. 5, no. 3, pp. 230–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Ohtsuka, A. Sakamoto, J. Pan et al., “Bcl6 is required for the development of mouse CD4+ and CD8α+ dendritic cells,” The Journal of Immunology, vol. 186, no. 1, pp. 255–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. J. T. Jackson, Y. Hu, R. Liu et al., “Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages,” EMBO Journal, vol. 30, no. 13, pp. 2690–2704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Hacker, R. D. Kirsch, X. S. Ju et al., “Transcriptional profiling identifies Id2 function in dendritic cell development,” Nature Immunology, vol. 4, no. 4, pp. 380–386, 2003. View at Google Scholar
  112. H. S. Ghosh, B. Cisse, A. Bunin, K. L. Lewis, and B. Reizis, “Continuous expression of the transcription factor E2-2 maintains the cell fate of mature plasmacytoid dendritic cells,” Immunity, vol. 33, no. 6, pp. 905–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Wang, C. L. Claus, G. Vaccarelli et al., “The basic helix-loop-helix transcription factor HEBAlt is expressed in pro-T cells and enhances the generation of t cell precursors,” The Journal of Immunology, vol. 177, no. 1, pp. 109–119, 2006. View at Google Scholar · View at Scopus
  114. M. Braunstein and M. K. Anderson, “HEB in the spotlight: transcriptional regulation of T-cell specification, commitment, and developmental plasticity,” Clinical and Developmental Immunology, vol. 2012, Article ID 678705, 15 pages, 2012. View at Publisher · View at Google Scholar
  115. B. T. Edelson, K. C. Wumesh, R. Juang et al., “Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 4, pp. 823–836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. D. M. Gascoyne, E. Long, H. Veiga-Fernandes et al., “The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development,” Nature Immunology, vol. 10, no. 10, pp. 1118–1124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Kamizono, G. S. Duncan, M. G. Seidel et al., “Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo,” Journal of Experimental Medicine, vol. 206, no. 13, pp. 2977–2986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. L. Burkly, C. Hession, L. Ogata et al., “Expression of relB is required for the development of thymic medulla and dendritic cells,” Nature, vol. 373, no. 6514, pp. 531–536, 1995. View at Google Scholar · View at Scopus
  119. L. Wu, A. D'Amico, K. D. Winkel, M. Suter, D. Lo, and K. Shortman, “RelB is essential for the development of myeloid-related CD8α- dendritic cells but not of lymphoid-related CD8α+ dendritic cells,” Immunity, vol. 9, no. 6, pp. 839–847, 1998. View at Publisher · View at Google Scholar · View at Scopus
  120. S. C. Sun, “The noncanonical NF-κB pathway,” Immunological Reviews, vol. 246, no. 1, pp. 125–140, 2012. View at Publisher · View at Google Scholar
  121. A. Le Bon, M. Montoya, M. J. Edwards et al., “A role for the transcription factor RelB in IFN-α production and in IFN-α-stimulated cross-priming,” European The Journal of Immunology, vol. 36, no. 8, pp. 2085–2093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Li, X. Zhang, X. Zheng et al., “Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference,” The Journal of Immunology, vol. 178, no. 9, pp. 5480–5487, 2007. View at Google Scholar
  123. A. Battistini, “Interferon regulatory factors in hematopoietic cell differentiation and immune regulation,” Journal of Interferon and Cytokine Research, vol. 29, no. 12, pp. 765–780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Schiavoni, F. Mattei, P. Sestili et al., “ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells,” Journal of Experimental Medicine, vol. 196, no. 11, pp. 1415–1425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Aliberti, O. Schulz, D. J. Pennington et al., “Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells,” Blood, vol. 101, no. 1, pp. 305–310, 2003. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Schiavoni, F. Mattei, P. Borghi et al., “ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells,” Blood, vol. 103, no. 6, pp. 2221–2228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. H. Tsujimura, T. Tamura, and K. Ozato, “Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells,” The Journal of Immunology, vol. 170, no. 3, pp. 1131–1135, 2003. View at Google Scholar · View at Scopus
  128. P. Tailor, T. Tamura, H. C. Morse, and K. Ozato, “The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse,” Blood, vol. 111, no. 4, pp. 1942–1945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Suzuki, K. Honma, T. Matsuyama et al., “Critical roles of interferon regulatory factor 4 in CD11bhighCD8α- dendritic cell development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 24, pp. 8981–8986, 2004. View at Publisher · View at Google Scholar
  130. T. Tamura, P. Tailor, K. Yamaoka et al., “IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity,” The Journal of Immunology, vol. 174, no. 5, pp. 2573–2581, 2005. View at Google Scholar · View at Scopus
  131. S. Bajana, K. Roach, S. Turner, J. Paul, and S. Kovats, “IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation,” The Journal of Immunology, vol. 189, no. 7, pp. 3368–3377, 2012. View at Publisher · View at Google Scholar
  132. L. Gabriele, A. Fragale, P. Borghi et al., “IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1500–1511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. K. Honda, T. Mizutani, and T. Taniguchi, “Negative regulation of IFN-α/β signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2416–2421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Inaba, M. Inaba, N. Romani et al., “Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 176, no. 6, pp. 1693–1702, 1992. View at Publisher · View at Google Scholar · View at Scopus
  135. K. Brasel, T. De Smedt, J. L. Smith, and C. R. Maliszewski, “Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures,” Blood, vol. 96, no. 9, pp. 3029–3039, 2000. View at Google Scholar · View at Scopus
  136. M. Gilliet, A. Boonstra, C. Paturel et al., “The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 195, no. 7, pp. 953–958, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. S. H. Naik, L. M. Corcoran, and L. Wu, “Development of murine plasmacytoid dendritic cell subsets,” Immunology and Cell Biology, vol. 83, no. 5, pp. 563–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. B. Fancke, M. Suter, H. Hochrein, and M. O'Keeffe, “M-CSF: a novel plasmacytoid and conventional dendritic cell poietin,” Blood, vol. 111, no. 1, pp. 150–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. H. Karsunky, M. Merad, A. Cozzio, I. L. Weissman, and M. G. Manz, “Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo,” Journal of Experimental Medicine, vol. 198, no. 2, pp. 305–313, 2003. View at Publisher · View at Google Scholar · View at Scopus
  140. J. L. Christensen and I. L. Weissman, “Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14541–14546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  141. E. Sitnicka, D. Bryder, K. Theilgaard-Mönch, N. Buza-Vidas, J. Adolfsson, and S. E. W. Jacobsen, “Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool,” Immunity, vol. 17, no. 4, pp. 463–472, 2002. View at Publisher · View at Google Scholar · View at Scopus
  142. N. Onai, A. Obata-Onai, R. Tussiwand, A. Lanzavecchia, and M. G. Manz, “Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 227–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. H. J. McKenna, K. L. Stocking, R. E. Miller et al., “Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells,” Blood, vol. 95, no. 11, pp. 3489–3497, 2000. View at Google Scholar · View at Scopus
  144. M. D. Witmer-Pack, D. A. Hughes, G. Schuler et al., “Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse,” Journal of Cell Science, vol. 104, no. 4, pp. 1021–1029, 1993. View at Google Scholar · View at Scopus
  145. K. P. A. MacDonald, V. Rowe, H. M. Bofinger et al., “The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion,” The Journal of Immunology, vol. 175, no. 3, pp. 1399–1405, 2005. View at Google Scholar · View at Scopus
  146. F. Ginhoux, M. Greter, M. Leboeuf et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, vol. 330, no. 6005, pp. 841–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. R. M. Ransohoff and A. E. Cardona, “The myeloid cells of the central nervous system parenchyma,” Nature, vol. 468, no. 7321, pp. 253–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. G. Hoeffel, Y. Wang, M. Greter et al., “Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages,” Journal of Experimental Medicine, vol. 209, no. 6, pp. 1167–1181, 2012. View at Publisher · View at Google Scholar
  149. F. Ginhoux, F. Tacke, V. Angeli et al., “Langerhans cells arise from monocytes in vivo,” Nature Immunology, vol. 7, no. 3, pp. 265–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. H. Lin, E. Lee, K. Hestir et al., “Discovery of a cytokine and its receptor by functional screening of the extracellular proteome,” Science, vol. 320, no. 5877, pp. 807–811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. Y. Wang, K. J. Szretter, W. Vermi et al., “IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia,” Nature Immunology, vol. 13, no. 8, pp. 753–760, 2012. View at Google Scholar
  152. M. Greter, I. Lelios, P. Pelczar et al., “Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia,” Immunity, vol. 37, no. 6, pp. 1050–1060, 2012. View at Publisher · View at Google Scholar
  153. D. Kingston, M. A. Schmid, N. Onai, A. Obata-Onai, D. Baumjohann, and M. G. Manz, “The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis,” Blood, vol. 114, no. 4, pp. 835–843, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. R. T. Sasmono, D. Oceandy, J. W. Pollard et al., “A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse,” Blood, vol. 101, no. 3, pp. 1155–1163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  155. D. Vremec, G. J. Lieschke, A. R. Dunn, L. Robb, D. Metcalf, and K. Shortman, “The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs,” European The Journal of Immunology, vol. 27, no. 1, pp. 40–44, 1997. View at Google Scholar · View at Scopus
  156. Y. Zhan, J. Vega-Ramos, E. M. Carrington et al., “The inflammatory cytokine, GM-CSF, alters the developmental outcome of murine dendritic cells,” European Journal of Immunology, vol. 42, no. 11, pp. 2889–2900, 2012. View at Publisher · View at Google Scholar
  157. I. L. King, M. A. Kroenke, and B. M. Segal, “GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization,” Journal of Experimental Medicine, vol. 207, no. 5, pp. 953–961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. M. Greter, J. Helft, A. Chow et al., “GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells,” Immunity, vol. 36, no. 6, pp. 1031–1046, 2012. View at Publisher · View at Google Scholar
  159. B. T. Edelson, T. R. Bradstreet, K. C. Wumesh et al., “Batf3-dependent CD11blow/-peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization,” PLoS ONE, vol. 6, no. 10, Article ID e25660, 2011. View at Publisher · View at Google Scholar
  160. D. Saunders, K. Lucas, J. Ismaili et al., “Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 184, no. 6, pp. 2185–2196, 1996. View at Publisher · View at Google Scholar · View at Scopus
  161. P. Sathe, J. Pooley, D. Vremec et al., “The acquisition of antigen cross-presentation function by newly formed dendritic cells,” The Journal of Immunology, vol. 186, no. 9, pp. 5184–5192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. Y. Zhan, E. M. Carrington, A. van Nieuwenhuijze et al., “GM-CSF increases cross-presentation and CD103 expression by mouse CD8+ spleen dendritic cells,” European Journal of Immunology, vol. 41, no. 9, pp. 2585–2595, 2011. View at Publisher · View at Google Scholar
  163. E. V. Rothenberg, J. E. Moore, and M. A. Yui, “Launching the T-cell-lineage developmental programme,” Nature Reviews Immunology, vol. 8, no. 1, pp. 9–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. J. H. Wang, A. Nichogiannopoulou, L. Wu et al., “Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation,” Immunity, vol. 5, no. 6, pp. 537–549, 1996. View at Publisher · View at Google Scholar · View at Scopus
  165. P. M. Domínguez and C. Ardavín, “Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation,” Immunological Reviews, vol. 234, no. 1, pp. 90–104, 2010. View at Publisher · View at Google Scholar