Table of Contents Author Guidelines Submit a Manuscript
Advances in Human-Computer Interaction
Volume 2012, Article ID 301608, 10 pages
http://dx.doi.org/10.1155/2012/301608
Research Article

RoboTable: An Infrastructure for Intuitive Interaction with Mobile Robots in a Mixed-Reality Environment

1Interaction Technology Laboratory, Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
2The Interaction Research Group, Department of Information Science and Media Studies, University of Bergen, Fosswinckelsgate 6, 5020 Bergen, Norway

Received 17 January 2011; Accepted 9 May 2011

Academic Editor: Kiyoshi Kiyokawa

Copyright © 2012 Haipeng Mi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Hornecker, “‘I don't understand it either, but it is cool’—visitor interactions with a multi-touch table in a museum,” in Proceedings of the IEEE International Workshop on Horizontal Interactive Human Computer System (IEEE TABLETOP '08), pp. 113–120, Amsterdam, The Netherlands, October 2008. View at Publisher · View at Google Scholar
  2. A. Mahmud, O. Mubin, J. R. Octavia et al., “Affective tabletop game: a new gaming experience for children,” in Proceedings of the 2nd IEEE International Workshop on Horizontal Interactive Human-Computer Systems (IEEE TABLETOP '07), pp. 44–51, Newport, RI, USA, October 2007. View at Publisher · View at Google Scholar
  3. M. R. Morris, A. M. Piper, A. Cassanego, A. Huang, A. Paepcke, and T. Winograd, “Mediating group dynamics through tabletop interface design,” IEEE Computer Graphics and Applications, vol. 26, no. 5, pp. 65–73, 2006. View at Publisher · View at Google Scholar
  4. H. Ishii, “Tangible bits: beyond pixels,” in Proceedings of the 2nd International Conference on Tangible and Embedded Interaction (ACM TEI '08), pp. 15–25, Bonn, Germany, February 2008. View at Publisher · View at Google Scholar
  5. D. Rosenfeld, M. Zawadzki, J. Sudol, and K. Perlin, “Physical objects as bidirectional user interface elements,” IEEE Computer Graphics and Applications, vol. 24, no. 1, pp. 44–49, 2004. View at Publisher · View at Google Scholar
  6. J. Kato, D. Sakamoto, M. Inami, and T. Igarashi, “Multi-touch interface for controlling multiple mobile robots,” in Proceedings of the 27th International Conference Extended Abstracts on Human Factors in Computing Systems (ACM CHI '09), pp. 3443–3448, Boston, Mass, USA, April 2009. View at Publisher · View at Google Scholar
  7. C. Guo, J. E. Young, and E. Sharlin, “Touch and toys: new techniques for interaction with a remote group of robots,” in Proceedings of the 27th International Conference Extended Abstracts on Human Factors in Computing Systems (ACM CHI '09), pp. 491–500, Boston, Mass, USA, April 2009.
  8. C. Guo and E. Sharlin, “Utilizing physical objects and metaphors for human robot interaction,” in Proceedings of the Artificial Intelligence and the Simulation of Behaviour Convention (AISB '08), AISB Press, Aberdeen, UK, April 2008.
  9. P. Frei, V. Su, B. Mikhak, and H. Ishii, “Curlybot: designing a new class of computational toys,” in Proceedings of the Conference on Human Factors in Computing Systems ‘The Future is Here’ (ACM CHI '20), pp. 129–136, The Hague, The Netherlands, April 2000.
  10. M. Kojima, M. Sugimoto, A. Nakamura, M. Tomita, H. N II, and M. Inami, “Augmented coliseum: an augmented game environment with small vehicles,” in Proceedings of the 1st IEEE International Workshop on Horizontal Interactive Human-Computer Systems (IEEE TABLETOP '06), pp. 3–8, Adelaide, Australia, January 2006. View at Publisher · View at Google Scholar
  11. J. Leitner, M. Haller, K. Yun, W. Woo, M. Sugimoto, and M. Inami, “IncreTable, a mixed reality tabletop game experience,” in Proceedings of the International Conference on Advances in Computer Entertainment Technology (ACM ACE '08), pp. 9–16, Yokohama, Japan, December 2008. View at Publisher · View at Google Scholar
  12. D. Calife, J. L. Bernardes, and R. Tori, “Robot arena: an augmented reality platform for game development,” Computers in Entertainment, vol. 7, no. 1, Article ID 11, 2009. View at Publisher · View at Google Scholar
  13. J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” in Proceedings of the 18th Annual Symposium on User Interface Software and Technology (ACM UIST '05), pp. 115–118, Seattle, Wash, USA, 2005.
  14. M. Kaltenbrunner and R. Bencina, “ReacTIVision: a computer-vision framework for table-based tangible interaction,” in Proceedings of the 1st ACM International Conference on Tangible and Embedded Interaction (ACM TEI '07), pp. 69–74, Baton Rouge, La, USA, 2007. View at Publisher · View at Google Scholar
  15. http://www.jbox2d.org.
  16. http://www.mt4j.org/mediawiki/index.php/Main_Page.
  17. http://bluecove.org.
  18. P. Marshall, “Do tangible interfaces enhance learning,” in Proceedings of the First International Conference on Tangible and Embedded Interaction (ACM TEI '07), pp. 163–170, Baton Rouge, La, USA, 2007. View at Publisher · View at Google Scholar
  19. H. Mi, A. Krzywinski, and M. Sugimoto, “RoboStory: a tabletop mixed reality framework for children's role play storytelling,” in Proceedings of the 1st International Workshop on Interactive Storytelling for Children (ACM IDC '10), Association for Computing Machinery, Barcelona, Spain, June 2010.
  20. T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,” Robotics and Autonomous Systems, vol. 42, no. 3-4, pp. 143–166, 2003. View at Publisher · View at Google Scholar