Table of Contents Author Guidelines Submit a Manuscript
Advances in Human-Computer Interaction
Volume 2013 (2013), Article ID 515164, 13 pages
http://dx.doi.org/10.1155/2013/515164
Research Article

Development of Estimating Equation of Machine Operational Skill by Utilizing Eye Movement Measurement and Analysis of Stress and Fatigue

1School of Science and Technology for Future Life, Department of Robotics and Mechatronics, Tokyo Denki University, 5 Asahi-chou, Senju, Adachi-ku, Tokyo 120-8551, Japan
2Hitachi Communication Networks Ltd., 1-1-10 Ohmorikita, Ohta-ku, Tokyo 143-0016, Japan
3Fuji Heavy Industries Ltd., 3-9-6 Ohsawa, Mitakashi, Tokyo 181-8577, Japan

Received 24 January 2013; Accepted 10 July 2013

Academic Editor: Eva Cerezo

Copyright © 2013 Satoshi Suzuki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Furuta, “Control of pendulum: from super mechano-system to human adaptive mechatronics,” in Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 1498–1507, Hawaii, USA, December 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Harashima and S. Suzuki, “Intelligent Mechatronics and Robotics keynote speech,” in Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, in CD-ROM, Hamburg, Germany, 2008.
  3. S. Suzuki, “Human adaptive mechatronics: skill acquisition in machine manipulation,” IEEE Industrial Electronics Magazine, vol. 4, no. 2, pp. 28–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Suzuki, K. Kurihara, K. Furuta, and F. Harashima, “Assistance control on a haptic system for human adaptive mechatronics,” Advanced Robotics, vol. 20, no. 3, pp. 323–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Furuta, Y. Kado, S. Shiratori, and S. Suzuki, “Assisting control for pendulum-like juggling in human adaptive mechatronics,” Proceedings of the Institution of Mechanical Engineers I, vol. 225, no. 6, pp. 709–720, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Suzuki and K. Furuta, “Adaptive impedance control to enhance human skill on a haptic interface system,” Journal of Control Science and Engineering, vol. 2012, Article ID 365067, 10 pages, 2012. View at Publisher · View at Google Scholar
  7. S. Baron, D. L. Kleinman, and W. H. Levison, “An optimal control model of human response part II: prediction of human performance in a complex task,” Automatica, vol. 6, no. 3, pp. 371–383, 1970. View at Google Scholar · View at Scopus
  8. D. T. McRuer and E. S. Krendel, “Mathematical models of human pilot behavior,” AGARDograph No. 188, NATO Advisory Group for Aerospace Research and Development, 1974. View at Google Scholar
  9. W. D. Gray, B. E. John, and M. E. Atwood, “Project ernestine: validating a GOMS analysis for predicting and explaining real-world task performance,” Human-Computer Interaction, vol. 8, no. 3, pp. 237–309, 1993. View at Google Scholar · View at Scopus
  10. T. Ohno and H. Ogasawara, “Information acquisition model of highly interactive tasks,” in Proceedings of the International Conference on Cognitive Science (ICCS/JCSS '99), pp. 283–293, Tokyo, Japan, 1999.
  11. M. F. Land and D. N. Lee, “Where we look when we steer,” Nature, vol. 369, no. 6483, pp. 742–744, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. S. K. Card, T. Moran, and A. Newell, The Psychology of Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1983.
  13. F. Harashima and S. Suzuki, “Future of mechatronics and human machine operation skill and visual perception,” SICE Journal of Control, Measurement, and System Integration, vol. 1, no. 1, pp. 18–25, 2008. View at Google Scholar
  14. S. Suzuki, F. Harashima, and K. Furuta, “Human control law and brain activity of voluntary motion by utilizing a balancing task with an inverted pendulum,” Advances in Human-Computer Interaction, vol. 2010, Article ID 215825, 16 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Bhuiyan, “Driver assistance systems to rate drowsiness: a preliminary study,” Studies in Computational Intelligence, vol. 199, pp. 415–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Yagi, “Variations of the eye fixation related potentials in VDT tasks,” The Japanese Journal of Ergonomics, vol. 35, pp. 522–523, 1999 (Japanese). View at Google Scholar
  17. K. Takahashi and H. Inoue, “A quantitative analysis on stress and fatigue for VDT workers measured by Heart Rate Variability (HRV),” Research Report in Faculty of Engineering and Resource Science, no. 30, pp. 1–7, 2009 (Japanese). View at Google Scholar
  18. H. Aoki, Y. Fujimoto, S. Suzuki, E. Sato-Shimokawara, and T. Yamaguchi, “Physiological responses on greeting with robot under difference of culture,” Automatic Control of Physiological State and Function, vol. 1, Article ID 235465, 7 pages, 2012. View at Publisher · View at Google Scholar
  19. S. Suzuki, K. Kuronuma, and F. Harashima, “Development of gaze detection system for multiple users: toward realization of an intelligent service interface,” in Proceedings of the International Joint Conference (ICROS-SICE '09), pp. 3245–3250, Fukuoka, Japan, August 2009. View at Scopus
  20. H. Igarashi, S. Suzuki, H. Kobayashi, and F. Harashima, “Role sharing analysis on multi-operator cooperative work,” in Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive (RO-MAN '09), pp. 1060–1065, Toyama, Japan, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Kolodko, S. Suzuki, and F. Harashima, “Eye-gaze tracking: an approach to pupil tracking targeted to FPGAs,” in Proceedings of the IEEE IRS/RSJ International Conference on Intelligent Robots and Systems (IROS '05), pp. 2942–2947, Alberta, Canada, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Miura and K. Shinohara, “Safety problems of the car navigation from the viewpoint of psychology of attention,” IATSS Review, vol. 26, no. 4, pp. 33–44, 2001. View at Google Scholar
  23. T. Ohno and H. Ogasawara, “Information Acquisition Model of Highly Interactive Tasks,” in Proceedings of the International Conference on Cognitive Science/Annual Meeting of the Japanese Cognitive Science Society Joint Conference (ICCS/JCSS '99), pp. 288–293, Tokyo, Japan, 1999.
  24. T. Ito, H. Matsubara, and R. Grimbergen, “Cognitive science approach to Shogi playing processes(1)-some results on memory experiments,” IPSJ, vol. 43, no. 10, pp. 2998–3011, 2002. View at Google Scholar
  25. K. Sakita, K. Ogawara, S. Murakami, K. Kawamura, and K. Ikeuchi, “Flexible cooperation between human and robot by interpreting human intention from gaze information,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '04), pp. 846–851, Sendai, Japan, October 2004. View at Scopus
  26. K. Kuronuma, S. Suzuki, and H. Igarashi, “Estimation method of awareness level using an iconic model for support robots,” in Proceedings of the IFToMM Asian Conference on Mechanism and Machine Science, in CDROM, Taipei, Taiwan, 2010.
  27. M. Ohsuga, F. Shimono, and H. Genno, “Assessment of phasic work stress using autonomic indices,” International Journal of Psychophysiology, vol. 40, no. 3, pp. 211–220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Takeishi and K. Murata, “Evaluation of child neurophysiological function in the environmental epidemiology,” Journal of Clinical and Experimental Medicine, vol. 212, no. 4, pp. 243–246, 2005 (Japanese). View at Google Scholar
  29. F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, D. A. Rand and L. -S. Young, Eds., vol. 898 of Lecture Notes in Mathematics, pp. 366–381, Springer, New York, NY, USA, 1981. View at Google Scholar