Table of Contents Author Guidelines Submit a Manuscript
Advances in Human-Computer Interaction
Volume 2013, Article ID 641074, 6 pages
http://dx.doi.org/10.1155/2013/641074
Research Article

Towards Brain-Computer Interface Control of a 6-Degree-of-Freedom Robotic Arm Using Dry EEG Electrodes

1Lab of Medical Informatics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Department of Automation, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki, Greece
3Department of Neurosurgery, Papageorgiou General Hospital, Thessaloniki, Greece

Received 4 January 2013; Revised 21 March 2013; Accepted 3 April 2013

Academic Editor: Panagiotis Bamidis

Copyright © 2013 Alexander Astaras et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Athanasiou and P. D. Bamidis, “A review on brain computer interfaces: contemporary achievements and future goals towards movement restoration,” Aristotle University Medical Journal, vol. 37, no. 3, pp. 35–44, 2010. View at Google Scholar
  2. B. Allison, J. D. R. Millan, A. Nijholt et al., “Future directions in Brain/Neuronal computer interaction (Future BNCI),” in Proceedings of the BCI Meeting 2010, Asilomar, Calif, USA, 2010.
  3. L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a review,” Sensors, vol. 12, no. 2, pp. 1211–1279, 2012. View at Publisher · View at Google Scholar
  4. F. Galán, M. Nuttin, E. Lew et al., “A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots,” Clinical Neurophysiology, vol. 119, no. 9, pp. 2159–2169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J.-H. Lee, J. Ryu, F. A. Jolesz, Z. H. Cho, and S. S. Yoo, “Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm,” Neuroscience Letters, vol. 450, no. 1, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. R. Hochberg, M. D. Serruya, G. M. Friehs et al., “Neuronal ensemble control of prosthetic devices by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp. 164–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Yanagisawa, M. Hirata, Y. Saitoh et al., “Real-time control of a prosthetic hand using human electrocorticography signals: technical note,” Journal of Neurosurgery, vol. 114, no. 6, pp. 1715–1722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Moustakas, Υδράργυρος-Six Degree of FreeDom Robotic Arm, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2011.
  9. J. I. Ekandem, T. A. Davis, I. Alvarez, M. T. James, and J. E. Gilbert, “Evaluating the ergonomics of BCI devices for research and experimentation,” Ergonomics, vol. 55, no. 5, pp. 592–598, 2012. View at Publisher · View at Google Scholar
  10. G. N. Ranky and S. Adamovich, “Analysis of a commercial EEG device for the control of a robot arm,” in Proceedings of the 36th Annual Northeast Bioengineering Conference (NEBEC '10), pp. 1–2, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Duvinage, T. Castermans, T. Dutoit, M. Petieau, T. Hoellinger, C. De Saedeleer et al., “A P300-based Quantitative Comparison between the Emotiv Epoc Headset and a Medical EEG Device,” Biomedical Engineering/765: Telehealth/766: Assistive Technologies: ACTA Press, 2012.
  12. N. Moustakas, Design and construction of a robotic arm capable of movement with 6 degrees of freedom and an exoskeleton sensor harness for its control [M.S. thesis], Alexander Technological Educational Institute of Thessaloniki, Sindos, Greece, 2011.
  13. H. Nagasaki, “Asymmetric velocity and acceleration profiles of human arm movements,” Experimental Brain Research, vol. 74, no. 2, pp. 319–327, 1989. View at Google Scholar · View at Scopus
  14. S. Plagenhoef, “Anatomical data for analyzing human motion,” Research Quarterly For Exercise and Sport, vol. 54, no. 2, pp. 169–178, 1983. View at Publisher · View at Google Scholar
  15. J. A. Stevens and M. E. P. Stoykov, “Using motor imagery in the rehabilitation of hemiparesis,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 7, pp. 1090–1092, 2003. View at Publisher · View at Google Scholar · View at Scopus