Advances in High Energy Physics

VolumeΒ 2008, Article IDΒ 982341, 16 pages

http://dx.doi.org/10.1155/2008/982341

## Hybrid Charmonium and the Puzzle

Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received 15 August 2008; Revised 25 October 2008; Accepted 19 November 2008

Academic Editor: SandipΒ Pakvasa

Copyright Β© 2008 Leonard S. Kisslinger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

Using the method of QCD sum rules, we estimate the energy of the lowest hybrid charmonium state, and find it to be at the energy of the (2) state, about 600βMeV above the state. Since our solution is not consistent with a pure hybrid at this energy, we conclude that the (2) state is probably an admixed and hybrid state. From this conjecture, we find a possible explanation of the famous puzzle.

#### 1. Introduction

A hybrid meson is a state composed of a quark and antiquark color octet, along with a valence gluon, giving a color zero particle. Hybrids are of great interest in studying the nature of QCD. The nonperturbative method of QCD sum rules [1, 2] has long been used to predict the energies of light quark hybrid mesons [3, 4] and hybrid baryons (see [5]). In the present work, we use this method to estimate the energy of the lowest charmonium hybrid. A major motivation for the present work is to understand the nature of the state, and to find a possible explanation of the long-standing puzzle.

The puzzle concerns the branching ratios for hadronic decays of the state compared to the state. By taking ratios of hadronic decays to gamma decays for these heavy-quark states, the wave functions at the origin cancel, and by using the lowest-order diagrams, one obtains the ratios of branching rates for two charmonium states: the so-called 13% rule. For the state compared to the state, however, the hadronic (e.g., ) decay ratio is more than an order of magnitude smaller than predicted [6]. This is the puzzle. There have been many, many theoretical attempts to explain this puzzle: Chen and Braaten [7] review earlier work by Hou and Soni, Brodsky, Lepage and Tuan, Karl and Roberts, Chaichian and Tornqvist, Pinsky, Brodsky and Karliner, and Li, Bugg and Zou. All seem to agree that this is an unsolved puzzle. More recently, there has been an attempt to locate the source of the problem [8], with the suggestion that there is a cancellation of two processes in the decay. Our present work suggests that one can obtain such a cancellation by including valence gluonic structure.

In Section 2, we show that the energy of the lowest hybrid charmonium state with the quantum numbers is that of the , but our solution is not consistent with a pure hybrid. Since the state is also expected to have that energy (about 600βMeV above that of the state), we predict that the state is an admixture of and hybrid components. In Section 3, we show that this can provide a solution to the puzzle. In Section 4, we give our conclusions and compare our results to lattice gauge calculations.

#### 2. Hybrid Charmonium Using QCD Sum Rules

We now will use the method of QCD sum rules to attempt to find the lowest hybrid charmonium state, assuming that such a pure hybrid charmonium meson with quantum numbers exists. First, let us review the method and the criteria for determining if one has obtained a satisfactory and accurate solution.

##### 2.1. Method of QCD Sum Rules for a Hybrid Charmonium Meson

The starting point of the method of QCD sum rules is the correlator, which for a hybrid meson is with the current creating the hybrid state being studied. The QCD sum rule is obtained by evaluating in two ways. First, after a Fourier transform to momentum space, a dispersion relation gives the left-hand side (LHS) of the sum rule: where is the mass of the state (assuming zero width) and is the start of the continuumβa parameter to be determined. The imaginary part of , with the term for the state we are seeking shown as a pole (corresponding to a term in ) and the higher-lying states produced by shown as the continuum, is illustrated in Figure 1.

Next, is evaluated by an operator product expansion (OPE), giving the right-hand side (RHS) of the sum rule: with increasing corresponding to increasing dimension of .

After a Borel transform, , defined in Appendix B, in which the variable is replaced by the Borel mass, , the final QCD sum rule has the form as we will show in what follows. Note that the Borel transform produces an exponential decrease with increasing values of , as shown by the pole term in (2.4). This reduces the contribution of the continuum, where .

This sum rule is used to estimate the heavy-hybrid mass, . One of the main sources of error is the treatment of the continuum. In addition to the parameter , one must parameterize the effective shape of the continuum. The criteria for a satisfactory solution are: (1) the contribution of the continuum should not be as large as the pole term in the LHS; (2) with an exact sum rule, the value of is independent of the value of (with the approximation of a fit to the continuum, there should be a minimum or maximum in the value of versus , and the value of at this extremum should be approximately the value of ); (3) there should be a gap between the solution for and , which reduces the contribution of the continuum to be smaller than the pole term due to the factor of after the Borel transform, as we will explain in what follows. If the value of is much larger than the expected excited hybrid states, however, the solution is not physical.

##### 2.2. Previous Results for Hybrids Using QCD Sum Rules and Lattice QCD Methods

Since mesons with certain quantum numbers, such as , cannot have a standard meson composition, there is a strong motivation for both experimental and theoretical searches for hybrid mesons, which can have such states. These states are called exotic or hermaphrodite mesons. Shortly after the introduction of QCD sum rules, they were used to attempt to find the masses and widths of exotics. The most accurate calculations [3, 4] predicted hybrid light-quark mesons in the 1.3β1.7βGeV region, where such a state has been found [9]. The solutions satisfy the criteria for a good solution, as explained above. For example, for a solution that has a hybrid mass of 1.3βGeV, the value of was 1.7βGeV, which is a reasonable separation of the lowest from the higher hybrid states. On the other hand, for these light meson hybrids, many terms in the OPE are needed, which significantly increases the uncertainty. This explains why previous calculations [3, 4] have found a rather wide range of values for the light-quark exotic hybrid.

For heavy-quark hybrids, the higher-order terms in the OPE are quite small, so the QCD sum rule method is more accurate. Since we are not trying to predict exotic hybrids, however, there is the serious complication of nonhybrid meson-hybrid meson mixing, which will be discussed in detail in what follows. This is an important aspect of our present work.

There have been many lattice QCD calculations of glueballs and light-quark hybrids [10]. The most recent calculations of light-quark hybrids find the lightest exotics to be about 2βGeV [11], quite a bit higher in energy than the QCD sum rule calculations. This probably is due to the fact that lattice QCD calculations for light quarks have some inconsistencies at the present time, while they are much more accurate for heavy-quark systems [12], as are QCD sum rules. Exotic charmonium states have been calculated using lattice QCD, and the was found to be about 4.4βGeV [13], with the expectation that the hybrid charmonium state is at a similar energy. For the calculation of nonexotic hybrid mesons, such as hybrids, there are other difficulties for both methods, as we will discuss in what follows.

##### 2.3. Heavy-Hybrid Meson Correlator

For a hybrid meson with quantum numbers we use the standard current [3, 4]: with , where is the charge conjugation operator, is the usual Dirac matrix, and is the heavy-quark field. Carrying out a four-dimensional Fourier transform, the correlator in momentum space is where is the quark propagator, with colors and . The color properties of , the gluon color field, with Dirac indices, are given in Appendix A. Note that the traces are both fermion and color traces. Details of and are given in Appendix A.

It is important to recognize that the correlator used in the QCD sum rule method is similar to the correlator used in the lattice gauge approach, with the same objective of finding the mass of a heavy-hybrid meson.

As described in the preceding subsection, the correlator is evaluated in the method of QCD sum rules via an OPE and a dispersion relation.

##### 2.4. OPE of the Scalar Correlator in Momentum Space

The QCD sum rule method uses an OPE in dimension (or inverse momentum) (2.3). For the hybrid meson, the lowest-order diagram [14] is shown in Figure 2.

Using the standard quark and gluon propagators (see Appendix A for some details), we find the following formula for this lowest-dimensional process: with

Extracting the scalar correlator , defined by , and carrying out the integrals, one finds for , the scalar term of , We find that the terms with three and four integrals are very small, and we do not include them in our calculation.

The second term in the OPE for the heavy-quark hybrid correlator includes the gluon condensate, illustrated in Figure 3.

For this process, the correlator has the same form as (2.3), except that the gluon trace used to obtain is replaced with the trace over the gluon condensate [1β4], which gives The fermionic factor is the same as for Figure 2. From this, one finds giving for the scalar part of Figure 3

##### 2.5. Borel Transform of the Correlator

To ensure convergence of the OPE of the correlator, one performs a Borel transform [1, 2], defined in Appendix B. This is discussed in detail in the early papers on QCD sum rules [1β4]. For our problem, we have assumed that , with higher-order terms being very small. We shall see that even is essentially negligible within the accuracy of the method, and the convergence after the Borel transform is established.

Using the equations in Appendix B, from (B.1), (B.2), and (B.3), where the quantities through are given, with , we find The multiple integral terms in (2.11) are small and are dropped, and is a variable of integration.

In a similar way, taking the Borel transform of , with , we find

##### 2.6. QCD Sum Rule for Hybrid Charm Meson

The method of QCD sum rules uses a dispersion relation for the correlator, which it equates to the correlator's operator product. Following the usual convention, we call the dispersion relation the LHS and the OPE the RHS: = dispersion relation, = OPE. Neglecting the width of the hybrid meson, the dispersion relation has the form of a pole and a continuum: . The dispersion relation is evaluated in Euclidean space, , and the continuum is assumed to start at . After the Borel transform, the form we use for the LHS is with the numerator of the pole, and and constants used to fit the form of the continuum. We should use a standard method to eliminate , and fit the sum rule requirement that the solution should not be sensitive to . In theory, the exact solution should be independent of .

For convenience in carrying out the sum rule, we have fit the RHS of the correlator to a polynomial in the Borel mass, and with and , with units .

We find that for all values of relevant to the sum rule, is just about 1% of , and drop it, as the method is only valid to a few percent. The sum rule is obtained by taking the ratio of to . To do this, we use the relations

Taking the ratio of to the equation , one obtains the sum rule for the mass of the heavy charmonium hybrid meson:

The result of the QCD sum rule fit is shown in Figure 4, with , , and .

The parameters and have magnitudes expected for the fit to the continunmm. Except for the large value of , the solution satisfies the criteria for a successful QCD sum rule, as Figure 4 shows. The solution for the mass is a few percent of the value of in the region of stability. The mass predicted for the hybrid is within a 10% accuracy of the sum rule method, while the experimental mass of the state [15] is The large value of , however, predicts that the excited hybrids are at a very high energy, as found in lattice gauge calculations, and that the cannot be a pure hybrid. Therefore, we expect that the physical is an admixture with a charm meson and a hybrid charm component. A second, orthogonal mixed state will be in the continuum. As we now show, this can provide a solution to the puzzle.

#### 3. Hybrid-Normal Charmonium and a Possible Solution to the Puzzle

In our treatment of hadronic decays of the state, we use the Sigma/Glueball model, which was motivated by the BES analysis of glueball decay [16] and the study of scalar mesons and scalar glueballs using QCD sum rules [17, 18]. We briefly review this model in what follows.

##### 3.1. The Sigma/Glueball Model

In energy regions where there are both scalar mesons and scalar glueballs, it is expected that states will be an admixture of mesons and glueballs. For this reason, when using QCD sum rules to find such states, one must use currents that are a linear combination of glueball and meson currents. A scalar glueball current can have the form while a scalar meson current has the form We use for our current [17] (with needed for correct dimensions)

The QCD sum rule calculation makes use of the correlator . The cross term between and is evaluated by using the scalar glueball-meson coupling theorem [19, 20]: with , which is illustrated in Figure 5.

The results of the QCD sum rule calculations [17, 18] are that there are three solutions: β80% scalar glueball at 1500βMeV the (1500);β80% scalar meson at 1350βMeV the (1370);βLight Scalar Glueball 400β600βMeV the Sigma/Glueball.

The Sigma/Glueball model follows from the existence of the , a scalar resonance with a broad width and the same mass as the scalar glueball found in the sum rule calculations, and makes use of the glueball-meson coupling shown in Figure 5. It has been used for the study of the Roper resonance decay into a nucleon and a [5, 21], and the prediction of production in proton-proton high-energy collisions [22], and other applications. The relevance for our present work is that just as it is possible to determine the mixing parameter for a state consisting of a scalar meson and a scalar glueball, it should be possible to determine the and hybrid admixture for charmonium systems.

##### 3.2. Hybrid Mixing Model and the Puzzle

The solution to the puzzle by the mixing of hybrid and normal meson components of the state can be understood from Figures 6 and 7, which illustrate the decay of a and a state into two hadrons. The decay involves the matrix element .

The corresponding hybrid decay involves the matrix element , with the diagram shown in Figure 7.

Assuming that the 2βs state is a - admixture, and recognizing that the and matrix elements are approximately equal, we see that the solution to the puzzle requires The solution of the puzzle would be given if In other words, if , we have found a solution of the puzzle. The evaluation of is rather complicated, and the testing of this conjecture will be carried out in future work.

#### 4. Conclusion

Using the method of QCD sum rules, we have shown that the state cannot be a pure charmonium hybrid. We have found that the energy of the lowest hybrid charmonium state is approximately the same as the state, about 600βMeV above the state, but that the QCD sum rule solution is not consistent with a pure hybrid. The standard model prediction for is at approximately the same energy. Therefore, we expect that the physical state is an admixture of a and a . Using this picture, we find a possible solution to the famous puzzle.

There have been many lattice calculations of exotic hybrid mesons. There is experimental evidence for an exotic light-quark meson (see [9] for a discussion) at 1.4 to 1.6βGeV, which is consistent with QCD sum rule calculations [3, 4], while lattice calculations find the lowest hybrid at 1.9 to 2.1βGeV. The lowest energy charmonium hybrid found in lattice calculations is at 4.4βGeV [13], about 800βMeV above our hybrid charmonium solution. This is consistent with our large value of . For the state, we have shown that one must use a mixed and current, which we shall use in future work. This use of a mixed current to define the correlator has not been done in lattice QCD caluclations, but with the QCD sum rule method, it can be done in a rather straight-forward calculation.

It is interesting that the energy difference between the and the is also approximately 600βMeV. If this is the energy of a hybrid, this could provide a solution to the puzzling decays of states that have recently been observed [23]. Investigation of this system is a topic of future research.

#### Appendices

#### A. Heavy-Quark Hybrid Correlator in Momentum Space

The current to create a heavy-quark hybrid meson with is where is the heavy-quark field, , is the usual Dirac matrix, is the charge conjugation operator, and the gluon color field is with the SU(3) generator (). From this, one finds for the correlator of a heavy-quark hybrid meson where is the quark propagator, a standard Dirac propagator for a fermion with mass , with colors and . Using , , and : To use dimensional regularization, we define the quantity , and let to complete the integrals. One can then show with

The first term in the OPE, shown in Figure 2, has a standard gluon propagator. For the gluon trace [3, 4] one finds

The correlator for the process shown in Figure 2 is found to be

The next term in the OPE for this heavy-quark system, where quark condensates are negligible, is the gluon condensate term, shown in Figure 3. The trace over the quark propagators is the same as in (A.4). The gluon field trace for this term is

From this, one finds , given in (2.11).

#### B. Borel Transforms

A key method that enables one to use the operator expansion to get accurate sum rules is the use of the Borel transform [1, 2], , defined by

Two key equations which we need are (with the modified Bessel functions)

Transforms used in the body of the paper are

#### Acknowledgments

This work was supported in part by the NSF/INT Grant no. 0529828. The authors thank Professors Pengnian Shen, Wei-xing Ma, and other IHEP, Beijing colleagues for helpful discussions. They thank Professor Y. Chen for discussions of lattice QCD in comparison to QCD sum rules for hybrid states.

#### References

- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, βQCD and resonance physics. theoretical foundations,β
*Nuclear Physics B*, vol. 147, no. 5, pp. 385β447, 1979. View at Publisher Β· View at Google Scholar - M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, βQCD and resonance physics. Applications,β
*Nuclear Physics B*, vol. 147, no. 5, pp. 448β518, 1979. View at Publisher Β· View at Google Scholar - J. Govaerts, F. de Viron, D. Gusbin, and J. Weyers, βQCD sum rules and hybrid mesons,β
*Nuclear Physics B*, vol. 248, no. 1, pp. 1β18, 1984. View at Publisher Β· View at Google Scholar - J. I. Latorre, S. Narison, P. Pascual, and R. Tarrach, βHermaphrodite mesons and QCD sum rules,β
*Physics Letters B*, vol. 147, no. 1β3, pp. 169β174, 1984. View at Publisher Β· View at Google Scholar - L. S. Kisslinger and Z. Li, βHybrid baryons via QCD sum rules,β
*Physical Review D*, vol. 51, no. 11, pp. R5986βR5989, 1995. View at Publisher Β· View at Google Scholar - M. E. B. Franklin, G. J. Feldman, G. S. Abrams et al., βMeasurement of $?$(3097) and ${?}^{\text{'}}$(3686) decays into selected hadronic modes,β
*Physical Review Letters*, vol. 51, no. 11, pp. 963β966, 1983. View at Publisher Β· View at Google Scholar - Y.-Q. Chen and E. Braaten, βAn explanation for the $\mathrm{{\rm O}\x81}$-$\mathrm{{\rm O}\x80}$ puzzle of $J/\mathrm{{\rm O}\x88}$ and ${\mathrm{{\rm O}\x88}}^{\beta \x80\xb2}$ decays,β
*Physical Review Letters*, vol. 80, no. 23, pp. 5060β5063, 1998. View at Publisher Β· View at Google Scholar - M. Suzuki, βPossible hadronic excess in $\mathrm{{\rm O}\x88}(2S)$ decay and the $\mathrm{{\rm O}\x81}\mathrm{{\rm O}\x80}$ puzzle,β
*Physical Review D*, vol. 63, no. 5, Article ID 054021, 8 pages, 2001. View at Publisher Β· View at Google Scholar - P. Page, βGluonic excitations' millennial finale,β
*Nuclear Physics A*, vol. 663-664, pp. 585cβ591c, 2000. View at Publisher Β· View at Google Scholar - Y. Chen, A. Alexandru, S. J. Dong et al., βGlueball spectrum and matrix elements on anisotropic lattices,β
*Physical Review D*, vol. 73, no. 1, Article ID 014516, 21 pages, 2006. View at Publisher Β· View at Google Scholar - Y. Chen, private communiation, 2008.
- K. J. Juge, J. Kuti, and C. J. Morningstar, βThe heavy hybrid spectrum from NRQCD and the Born-Oppenheimer approximation,β
*Nuclear Physics B*, vol. 83-84, no. 1β3, pp. 304β306, 2000. View at Google Scholar - X. Liao and T. Manke, βExcited charmonium spectrum from anisotropic lattices,β submitted, http://arxiv.org/abs/hep-lat/0210030.
- D. Binosi and L. TheuΓl, βJaxoDraw: a graphical user interface for drawing Feynman diagrams,β
*Computer Physics Communications*, vol. 161, no. 1-2, pp. 76β86, 2004. View at Publisher Β· View at Google Scholar - W.-M. Yao, C. Amsler, D. Asner et al., βReview of particle physics,β
*Journal of Physics G*, vol. 33, no. 1, pp. 1β1232, 2006. View at Publisher Β· View at Google Scholar - L. Y. Dong, (BES Collaboration), BES CONF97.
- L. S. Kisslinger, J. Gardner, and C. Vanderstraeten, βMixed scalar glueballs and mesons,β
*Physics Letters B*, vol. 410, no. 1, pp. 1β5, 1997. View at Publisher Β· View at Google Scholar - L. S. Kisslinger and M. B. Johnson, βScalar mesons, glueballs, instantons and the glueball/sigma,β
*Physics Letters B*, vol. 523, no. 1-2, pp. 127β134, 2001. View at Publisher Β· View at Google Scholar - V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, βIn search of scalar gluonium,β
*Nuclear Physics B*, vol. 165, no. 1, pp. 67β79, 1980. View at Publisher Β· View at Google Scholar - V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, βAre all hadrons alike?β
*Nuclear Physics B*, vol. 191, no. 2, pp. 301β369, 1981. View at Publisher Β· View at Google Scholar - L. S. Kisslinger and Z. Li, βSigma signal for hybrid baryon decay,β
*Physics Letters B*, vol. 445, no. 3-4, pp. 271β273, 1999. View at Publisher Β· View at Google Scholar - L. S. Kisslinger, W. Ma, and P. Shen, βSingle and double peripheral production of sigmas in proton-proton collisions,β
*Physical Review D*, vol. 71, no. 9, Article ID 094021, 6 pages, 2005. View at Publisher Β· View at Google Scholar - H. Vogel, βUpsilon decays,β in
*Proceedings of 4th Flavor Physics and CP Violation Conference (FPCP '06)*, Vancouver, Canada, April 2006.