Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2012, Article ID 268321, 24 pages
Review Article

Neutrinos and Big Bang Nucleosynthesis

Center for Cosmology and Astro-Particle Physics, Department of Physics, Department of Astronomy, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, USA

Received 6 July 2012; Accepted 8 October 2012

Academic Editor: Arthur B. McDonald

Copyright © 2012 Gary Steigman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) radiation. In this BBN review, focused on neutrinos and more generally on dark radiation, the BBN constraints on the number of “equivalent neutrinos” (dark radiation), on the baryon asymmetry (baryon density), and on a possible lepton asymmetry (neutrino degeneracy) are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but currently inconclusive, hint of the presence of dark radiation, and they constrain any lepton asymmetry. For all the cases considered here there is a “lithium problem”: the BBN-predicted lithium abundance exceeds the observationally inferred primordial value by a factor of .