Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2012, Article ID 268321, 24 pages
http://dx.doi.org/10.1155/2012/268321
Review Article

Neutrinos and Big Bang Nucleosynthesis

Center for Cosmology and Astro-Particle Physics, Department of Physics, Department of Astronomy, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, USA

Received 6 July 2012; Accepted 8 October 2012

Academic Editor: Arthur B. McDonald

Copyright © 2012 Gary Steigman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Steigman, “Primordial nucleosynthesis in the precision cosmology era,” Annual Review of Nuclear and Particle Science, vol. 57, pp. 463–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Simha and G. Steigman, “Constraining the early-Universe baryon density and expansion rate,” Journal of Cosmology and Astroparticle Physics, vol. 2008, no. 6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Steigman, “Primordial nucleosynthesis: the predicted and observed abundances and their consequences,” in Proceedings of the 11th Symposium on Nuclei in the Cosmos (NIC '11), N. Christlieb, Ed., PoS, Trieste, Italy, 2010.
  4. K. M. Nollett and G. P. Holder, “An analysis of constraints on relativistic species from primordial nucleosynthesis and the cosmic microwave background,” Physical Review D. In press.
  5. G. Steigman, “The cosmological evolution of the average mass per baryon,” Journal of Cosmology and Astroparticle Physics, vol. 2006, no. 10, article 016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Steigman, D. N. Schramm, and J. E. Gunn, “Cosmological limits to the number of massive leptons,” Physics Letters B, vol. 66, no. 2, pp. 202–204, 1977. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico, “Relic neutrino decoupling including flavour oscillations,” Nuclear Physics B, vol. 729, no. 1-2, pp. 221–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Pastor, T. Pinto, and G. G. Raffelt, “Relic density of neutrinos with primordial asymmetries,” Physical Review Letters, vol. 102, no. 24, Article ID 241302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Beaudet and P. Goret, “Leptonic numbers and the neutron to proton ratio in the hot big bang model,” Astronomy & Astrophysics, vol. 49, p. 415, 1976. View at Google Scholar
  10. G. Beaudet and A. Yahil, “More on big-bang nucleosynthesis with nonzero lepton numbers,” Astrophysical Journal, vol. 218, pp. 253–262, 1977. View at Publisher · View at Google Scholar
  11. A. M. Boesgaard and G. Steigman, “Big bang nucleosynthesis—theories and observations,” The Annual Review of Astronomy and Astrophysics, vol. 23, p. 319, 1985. View at Publisher · View at Google Scholar
  12. H. S. Kang and G. Steigman, “Cosmological constraints on neutrino degeneracy,” Nuclear Physics B, vol. 372, no. 1-2, pp. 494–520, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Barger, J. P. Kneller, P. Langacker, D. Marfatia, and G. Steigman, “Hiding relativistic degrees of freedom in the early universe,” Physics Letters B, vol. 569, no. 3-4, pp. 123–128, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. J. P. Kneller and G. Steigman, “BBN for pedestrians,” New Journal of Physics, vol. 6, no. 117, pp. 1–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Simha and G. Steigman, “Constraining the universal lepton asymmetry,” Journal of Cosmology and Astroparticle Physics, vol. 2008, no. 8, article 011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Barger, J. P. Kneller, H. S. Lee, D. Marfatia, and G. Steigman, “Effective number of neutrinos and baryon asymmetry from BBN and WMAP,” Physics Letters B, vol. 566, no. 1-2, pp. 8–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Nakamura, K. Hagiwara, K. Hikasa et al., “2011 review of particle physics,” Journal of Physics G, vol. 37, Article ID 075021, 2010, (and 2011 partial update for the 2012 edition). View at Google Scholar
  18. R. H. Cyburt, B. D. Fields, and K. A. Olive, “Primordial nucleosynthesis in light of WMAP,” Physics Letters B, vol. 567, no. 3-4, pp. 227–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. H. Cyburt, “Primordial nucleosynthesis for the new cosmology: determining uncertainties and examining concordance,” Physical Review D, vol. 70, no. 2, Article ID 023505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. H. Cyburt, B. D. Fields, and K. A. Olive, “An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens,” Journal of Cosmology and Astroparticle Physics, vol. 2008, no. 11, article 012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. M. Bania, R. T. Rood, and D. S. Balser, “The cosmological density of baryons from observations of 3He+ in the Milky Way,” Nature, vol. 415, no. 6867, pp. 54–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. R. I. Epstein, J. M. Lattimer, and D. N. Schramm, “The origin of deuterium,” Nature, vol. 263, no. 5574, pp. 198–202, 1976. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Geiss and G. Gloeckler, “Abundances of deuterium and helium-3 in the protosolar cloud,” Space Science Reviews, vol. 84, no. 1-2, pp. 239–250, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Kirkman, D. Tytler, N. Suzuki, J. M. O'Meara, and D. Lubin, “The cosmological baryon density from the deuterium-to-hydrogen ratio in QSO absorption systems: D/H toward Q1243+3047,” Astrophysical Journal, vol. 149, no. 1, pp. 1–28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. O'Meara, S. Burles, J. X. Prochaska, G. E. Prochter, R. A. Bernstein, and K. M. Burgess, “The deuterium-to-hydrogen abundance ratio toward the QSO SDSS J155810.16–003120.01,” Astrophysical Journal, vol. 649, no. 2, pp. L61–L65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Pettini, B. J. Zych, M. T. Murphy, A. Lewis, and C. C. Steidel, “Deuterium abundance in the most metal-poor damped Lyman alpha system: converging on Ωb,0h2,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 4, pp. 1499–1510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Fumagalli, J. M. O'Meara, and J. X. Prochaska, “Detection of pristine gas two billion years after the big bang,” Science, vol. 334, no. 6060, pp. 1245–1249, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Pettini and R. Cooke, “A new, precise measurement of the primordial abundance of deuterium,” Monthly Notices of the Royal Astronomical Society (MNRAS), vol. 425, no. 4, pp. 2477–2486, 2012. View at Publisher · View at Google Scholar
  29. Y. I. Izotov and T. X. Thuan, “The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis,” Astrophysical Journal Letters, vol. 710, no. 1, pp. L67–L71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Spite and M. Spite, “Abundance of lithium in unevolved halo stars and old disk stars—interpretation and consequences,” Astronomy & Astrophysics, vol. 115, pp. 357–366, 1982. View at Google Scholar
  31. P. E. Nissen and W. J. Schuster, “Two distinct halo populations in the solar neighborhood: IV. Lithium abundances,” Astronomy and Astrophysics, vol. 543, article A28, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas, and V. V. Smith, “Lithium isotopic abundances in metal-poor halo stars,” Astrophysical Journal, vol. 644, no. 1, pp. 229–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Aoki, P. Barklem, T. C. Beers, N. Christlieb, and S. Inoue, “Lithium abundances in extremely metal-poor turn off stars,” Astrophysical Journal, vol. 698, pp. 1803–1812, 2009. View at Publisher · View at Google Scholar
  34. K. Lind, F. Primas, C. Charbonnel, F. Grundahl, and M. Asplund, “Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGC 6397,” Astronomy and Astrophysics, vol. 503, no. 2, pp. 545–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Bonifacio, L. Sbordone, E. Caffau et al., “Chemical abundances of distant extremely metal-poor unevolved stars,” Astronomy and Astrophysics, vol. 542, article A87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. B. D. Fields, “The primordial lithium problem,” Annual Review of Nuclear and Particle Science, vol. 61, pp. 47–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Spite, F. Spite, and P. Bonifacio, “The cosmic Lithium problem,” Memorie della Società Astronomica Italiana, vol. 22, pp. 9–18, 2012. View at Google Scholar
  38. E. Komatsu, K. M. Smith, J. Dunkley et al., “Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophysical Journal, vol. 192, no. 2, article 18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Dunkley, R. Hlozek, J. Sievers et al., “The atacama cosmology telescope: cosmological parameters from the 2008 power spectrum,” Astrophysical Journal, vol. 739, no. 1, article 52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Keisler, C. L. Reichardt, K. A. Aird et al., “A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope,” Astrophysical Journal, vol. 743, no. 1, article 28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Archidiacono, E. Calabrese, and A. Melchiorri, “Case for dark radiation,” Physical Review D, vol. 84, no. 12, Article ID 123008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Hamann, J. Lesgourgues, and G. Mangano, “Using big bang nucleosynthesis in cosmological parameter extraction from the cosmic microwave background: a forecast for PLANCK,” Journal of Cosmology and Astroparticle Physics, vol. 2008, no. 3, article 004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Galli, M. Martinelli, A. Melchiorri, L. Pagano, B. D. Sherwin, and D. N. Spergel, “Constraining fundamental physics with future CMB experiments,” Physical Review D, vol. 82, no. 12, Article ID 123504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. B. E. J. Pagel, E. A. Simonson, R. J. Terlevich, and M. G. Edmunds, “The primordial helium abundance from observations of extragalactic HII regions,” Monthly Notices of the Royal Astronomical Society, vol. 255, pp. 325–345, 1992. View at Google Scholar
  45. K. A. Olive, G. Steigman, and E. D. Skillman, “The primordial abundance of 4He: an update,” Astrophysical Journal Letters, vol. 483, no. 2, pp. 788–797, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. K. A. Olive and E. D. Skillman, “A realistic determination of the error on the primordial helium abundance: steps toward nonparametric nebular helium abundances,” Astrophysical Journal, vol. 617, no. 1, pp. 29–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Aver, K. A. Olive, and E. D. Skillman, “A new approach to systematic uncertainties and self-consistency in helium abundance determinations,” Journal of Cosmology and Astroparticle Physics, vol. 2010, no. 5, article 003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Aver, K. A. Olive, and E. D. Skillman, “An MCMC determination of the primordial helium abundance,” Journal of Cosmology and Astroparticle Physics, vol. 2012, no. 4, article 004, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. I. Izotov and T. X. Thuan, “The primordial abundance of 4He revisited,” Astrophysical Journal Letters, vol. 500, no. 1, pp. 188–216, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. I. Izotov and T. X. Thuan, “Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of blue compact galaxies,” Astrophysical Journal, vol. 602, no. 1, pp. 200–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. I. Izotov, T. X. Thuan, and G. Stasińska, “The primordial abundance of 4He: a self-consistent empirical analysis of systematic effects in a large sample of low-metallicity H II regions,” Astrophysical Journal, vol. 662, no. 1 I, pp. 15–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Peimbert, M. Peimbert, and V. Luridiana, “Temperature bias and the primordial helium abundance determination,” Astrophysical Journal Letters, vol. 565, no. 2, pp. 668–680, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Peimbert, V. Luridiana, and A. Peimbert, “Revised primordial helium abundance based on new atomic data,” Astrophysical Journal Letters, vol. 666, no. 2 I, pp. 636–646, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Fukugita and M. Kawasaki, “Primordial helium abundance: a reanalysis of the Izotov-Thuan spectroscopic sample,” Astrophysical Journal, vol. 646, no. 2, pp. 691–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. R. L. Porter, G. J. Ferland, and K. B. Macadam, “He I emission in the Orion Nebula and implications for primordial helium abundance,” Astrophysical Journal, vol. 657, no. 1 I, pp. 327–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. R. L. Porter, G. J. Ferland, K. B. MacAdam, and P. J. Storey, “Uncertainties in theoretical He I emissivities: H II regions, primordial abundance and cosmological recombination,” Monthly Notices of the Royal Astronomical Society, vol. 393, no. 1, pp. L36–L40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Joudaki, “Constraints on neutrino mass and light degrees of freedom in extended cosmological parameter spaces,” http://arxiv.org/abs/1202.0005.