Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2013 (2013), Article ID 351926, 34 pages
Review Article

Solar Neutrinos

1Dipartimento di Fisica, Universitá degli Studi di Milano and INFN Milano, Via Celoria 16, 20133 Milano, Italy
2Instituto de Fisica Corpuscular, CSIC-UVEG, 46071 Valencia, Spain
3Instituto de Ciencias del Espacio (CSIC-IEEC), Facultad de Ciencias, Campus UAB, 08193 Bellaterra, Spain

Received 13 July 2012; Accepted 9 October 2012

Academic Editor: Arthur B. McDonald

Copyright © 2013 V. Antonelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The study of solar neutrinos has given a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.