Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2013 (2013), Article ID 536832, 5 pages
Research Article

A Cosmological Scaling Relation for Describing the Late Time Dynamics

1Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, I-80126 Napoli, Italy
2INFN Sez. di Napoli, Compl. Univ. Monte S. Angelo Ed. N Via Cinthia, I-80126 Napoli, Italy
3Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70543, 04510 México, DF, Mexico

Received 24 March 2013; Revised 16 June 2013; Accepted 26 June 2013

Academic Editor: Rong-Gen Cai

Copyright © 2013 Gerardo Cristofano and Orlando Luongo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A scaling relation between mass and minimal information of a given system is inferred from primordial black holes. Extending its validity, it is possible to describe different stages of the universe evolution. Particularly, the broad interest on matching the scaling law, from early to late redshift regimes, may suggest the mechanism to relate quantum and classical aspects of gravity. Under this hypothesis, the scaling relation is interpreted as a thermodynamic modification able to describe the cosmological dynamics at late times. In this scheme, dark energy emerges, as a consequence of assuming the validity of our scale relation. The corresponding equation of state reduces to a cosmological constant at early times and evolves in terms of the apparent horizon at late times.